Skip to main content
Log in

Ovariectomized rodents as a menopausal metabolic syndrome model. A minireview

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Bilateral ovariectomy is the best characterized and the most reported animal model of human menopause. Ovariectomized rodents develop insulin resistance (IR) and visceral obesity, the main risk factors in the pathophysiology of metabolic syndrome (MS). These alterations are a consequence of hypoestrogenic status, which produces an augment of visceral fat, high testosterone levels (hyperandrogenism), as well as inflammation, oxidative stress, and metabolic complications, such as dyslipidemia, hepatic steatosis, and endothelial dysfunction, among others. Clinical trials have reported that menopause per se increases the severity and incidence of MS, and causes the highest mortality due to cardiovascular disease in women. Despite all the evidence, there are no reports that clarify the influence of estrogenic deficiency as a cause of MS. In this review, we provide evidence that ovariectomized rodents can be used as a menopausal metabolic syndrome model for evaluating and discovering new, safe, and effective therapeutic approaches in the treatment of cardiometabolic complications associated to MS during menopause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arnold AP (2010) Promoting the understanding of sex differences to enhance equity and excellence in biomedical science. Biol Sex Differ 1(1):1–3

    Google Scholar 

  2. Morrow EH (2015) The evolution of sex differences in disease. Biol Sex Differ 6(5):1–7

    CAS  Google Scholar 

  3. Clayton JA, Collins FS (2014) Policy: NIH to balance sex in cell and animal studies. Nature 509(7500):282–283

    Google Scholar 

  4. Gilbert LI, Bollenbacher WE, Granger NA (1980) Insect endocrinology: regulation of endocrine glands, hormone titer, and hormone metabolism. Annu Rev Physiol 42(1):493–510

    CAS  Google Scholar 

  5. Davies JP (1995) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic Publishers 1–12

  6. Köhrle J (2018) Thyroid Hormones and Derivatives: Endogenous Thyroid Hormones and Their Targets. Methods Mol Biol 1801:85–104

    Google Scholar 

  7. De Groef B, Grommen SVH, Darras VM (2018) Forever young: endocrinology of paedomorphosis in the Mexican axolotl (Ambystoma mexicanum). Gen Comp Endocrinol 266:194–201

    Google Scholar 

  8. Arnold AP (2017) A general theory of sexual differentiation. J Neurosci Res 95(1–2):291–300

    CAS  Google Scholar 

  9. Dos Santos AC, Viana DC, de Oliveira GB, Lobo LM, Assis-Neto AC (2015) Intrauterine sexual differentiation: biosyntesis and action of sexual steroid hormones. Braz Arch Biol Technol 58(3):395–405

    Google Scholar 

  10. Palmer BF, Clegg DJ (2015) The sexual dimorphism of obesity. Mol Cell Endocrinol 402C:113–119

    Google Scholar 

  11. Mauvais-Jarvis F, Clegg DJ, Hevener AL (2013) The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev 34(3):309–338

    CAS  Google Scholar 

  12. Lizcano F, Guzmán G (2014) Estrogen deficiency and the origin of obesity during menopause. Biomed Res Int 2014:1–11

    Google Scholar 

  13. Palmisano BT, Zhu L, Stafford JM (2017) Role of estrogens in the regulation of liver lipid metabolism. Adv Exp Med Biol 1043:227–256

    CAS  Google Scholar 

  14. Chen JQ, Brown TR, Russo J (2009) Regulation of energy metabolism pathways by estrogens and estrogenic chemicals and potential implications in obesity associated with increased exposure to endocrine disruptors. Biochim Biophys Acta 1793(7):1128–1143

    CAS  Google Scholar 

  15. Mauvais-Jarvis F, Clegg DJ, Hevener AL (2011) The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev 34(3):309–338

    Google Scholar 

  16. Xu Y, López M (2018) Central regulation of energy metabolism by estrogens. Mol Metab 15:104–115

    CAS  Google Scholar 

  17. Trenti A, Tedesco S, Boscaro C, Trevisi L, Bolego C, Cignarella A (2018) Estrogen, angiogenesis, immunity and cell metabolism: solving the puzzle. Int J Mol Sci 19(3):859

    Google Scholar 

  18. Chakrabarti S, Lekontseva O, Davidge ST (2008) Estrogen is a modulator of vascular inflammation. Int Union of Biochem and Mol Biol Life 60(6):376–382

    CAS  Google Scholar 

  19. Strehlow K, Rotter S, Wassmann S, Adam O, Grohé C, Laufs K, Böhm M, Nickenig G (2003) Modulation of antioxidant enzyme expression and function by estrogen. Circ Res 93(2):170–177

    CAS  Google Scholar 

  20. Sheng-Huang C, Chieh-Hsin C, Mu-Chun Y, Wen-Tung H, Chia-Ying H, Ya-Ting H, Wan-Ling SU, Jiuan-Jen S, Chih-Yang H, Jer-Yuh L (2015) Effects of estrogen on glutathione and catalase levels in human erythrocyte during menstrual cycle. Biomedical reports 3(2):266–268

    Google Scholar 

  21. Straub RH (2007) The complex role of estrogens in inflammation. Endocr Rev 28(5):521–574

    CAS  Google Scholar 

  22. Gupta S, Villalón CM, Mehrotra S, de Vries R, Garrelds IM, Saxena PR, MaassenVanDenBrink A (2007) Female sex hormones and rat dural vasodilatation to CGRP, periarterial electrical stimulation and capsaicin. Headache: J Head Face Pain 47(2):225–235

    Google Scholar 

  23. González-Hernández A, Marichal-Cancino BA, Lozano-Cuenca J, López-Canales JS, Muñoz-Islas E, Ramírez-Rosas MB, Villalón CM (2016) Heteroreceptors modulating CGRP release at neurovascular junction: potential therapeutic implications on some vascular-related diseases. Biomed Res Int 2016:2056786

    Google Scholar 

  24. Knowlton AA, Lee AR (2012) Estrogen and the cardiovascular system. Pharmacol Ther 135(1):54–70

    CAS  Google Scholar 

  25. Wallace IR, McKinley MC, Bell PM, Hunter SJ (2013) Sex hormone binding globulin and insulin resistance. Clin Endocrinol (Oxf) 78(3):321–329

    CAS  Google Scholar 

  26. Davis SR, Lambrinoudaki I, Lumsden M, Mishra GD, Pal L, Rees M, Santoro N, Simoncini T (2015) Menopause. Nat Rev Dis Primers 1:15004

    Google Scholar 

  27. Gourdy P, Guillaume M, Fontaine C, Adlanmerini M, Montagner A, Laurell H, Lenfant F, Arnal JF (2018) Estrogen receptor subcellular localization and cardiometabolism. Mol Metab 15:56–69

    CAS  Google Scholar 

  28. Ahem M, Yeah A (2010) Gender differences in coronary heart disease. Neth Heart J 18(12):598–602

    Google Scholar 

  29. Carr MC (2003) The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab 88(6):2404–2411

    CAS  Google Scholar 

  30. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr (2009) Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation. Int Circ 120(16):1640–1645

    CAS  Google Scholar 

  31. Després JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, Rodés-Cabau J, Bertrand OF, Poirier P (2008) Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol 28(6):1039–1049

    Google Scholar 

  32. Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C (2004) Definition of metabolic syndrome: report of the national heart, lung, and blood institute/american heart association conference on scientific issues related to definition. Circulation 109(3):433–438

    Google Scholar 

  33. Murguía-Romero M, Jiménez-Flores JR, Sigrist-Flores SC, Espinoza-Camacho MA, Jiménez-Morales M, Piña E, Méndez-Cruz AR, Villalobos-Molina R, Reaven GM (2013) Plasma triglyceride/HDL- cholesterol ratio, insulin resistance, and cardiometabolic risk in young adults. J Lipid Res 54(10):2795–2799

    Google Scholar 

  34. Hopps E, Noto D, Caimi G, Averna MR (2010) A novel component of the metabolic syndrome: the oxidative stress. Nutr Metab Cardiovasc Dis 20(1):72–77

    CAS  Google Scholar 

  35. Torres S, Fabersani E, Marquez A, Gauffin-Cano P (2018) Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. Eur J Nutr 58(1):27–43

    Google Scholar 

  36. Stefanska A, Bergmann K, Sypniewska G (2015) Metabolic syndrome and menopause: pathophysiology, clinical and diagnostic significance. Adv Clin Chem 72:1–75

    CAS  Google Scholar 

  37. Ziaei S, Mohseni H (2013) Correlation between hormonal statuses and metabolic syndrome in postmenopausal women. J Family Reprod Health 7(2):63–66

    Google Scholar 

  38. Janssen I, Powell LH, Crawford S, Lasley B, Sutton-Tyrrell K (2008) Menopause and the metabolic syndrome: the study of women's health across the nation. Arch Intern Med 168(14):1568–1575

    CAS  Google Scholar 

  39. Cho GJ, Lee JH, Park HT, Shin JH, Hong SC, Kim T, Hur JY, Lee KW, Park YK, Kim SH (2008) Postmenopausal status according to years since menopause as an independent risk factor for the metabolic syndrome. Menopause 15(3):524–529

    Google Scholar 

  40. De Marchi R, Dell'Agnolo CM, Lopes TCR, Gravena AAF, Demitto MO, Brischiliari SCR, Borghesan DHP, Carvalho MDB, Pelloso SM (2017) Prevalence of metabolic syndrome in pre- and postmenopausal women. Arch Endocrinol Metab 61(2):160–166

    Google Scholar 

  41. Kim HM, Park J, Ryu SY, Kim J (2007) The effect of menopause on the metabolic syndrome among Korean women: the Korean National Health and Nutrition Examination Survey, 2001. Diabetes Care 30(3):701–706

    CAS  Google Scholar 

  42. Ruan X, Jin J, Hua L, Liu Y, Wang J, Liu S (2010) The prevalence of metabolic syndrome in Chinese postmenopausal women and the optimum body composition indices to predict it. Menopause 17(3):566–570

    Google Scholar 

  43. Eshtiaghi R, Esteghamati A, Nakhjavani M (2010) Menopause is an independent predictor of metabolic syndrome in Iranian women. Maturitas 65(3):262–266

    Google Scholar 

  44. Kunicki M, Rudnicka E, Skórska J, Calik-Ksepka AI, Smolarczyk R (2018) Insulin resistance indexes in women with premature ovarian insufficiency - a pilot study. Ginekol Pol 89(7):364–369

    Google Scholar 

  45. Sowers M, Zheng H, Tomey K, Karvonen-Gutierrez C, Jannausch M, Li X, Yosef M, Symons J (2007) Changes in body composition in women over six years at midlife: ovarian and chronological aging. J Clin Endocrinol Metab 92(3):895–901

    CAS  Google Scholar 

  46. Lovejoy JC, Champagne CM, de Jonge L, Xie H, Smith SR (2008) Increased visceral fat and decreased energy expenditure during the menopausal transition. Int J Obes (Lond) 32(6):949–958

    CAS  Google Scholar 

  47. Fonseca-Alaniz MH, Takada J, Alonso-Vale MI, Lima FB (2007) Adipose tissue as an endocrine organ: from theory to practice. J Pediatr (Rio J) 83(5):192–203

    Google Scholar 

  48. da Cruz Fonseca EJN, Oliveira Rocha TP, Lustosa Nogueira LA, Braga de Melo J, Lima e Silva B, Jardim Lopes E, Batalha Serra C, Gomes Andrade MV, Bandeira de Sous SM, de Figueredo Neto JA (2018) Metabolic syndrome and insulin resistance by HOMA-IR in menopause. Int J Cardiovasc Sci 31(3):201–208

    Google Scholar 

  49. Farahmand M, Ramezani Tehrani F, Simbar M, Mehrabi Y, Khalili D, Azizi F (2014) Does metabolic syndrome or its components differ in naturally and surgically menopausal women? Climacteric 17(4):348–355

    CAS  Google Scholar 

  50. Lobo RA (2007) Surgical menopause and cardiovascular risks. Menopause 14(3 Pt 2):562–566

    Google Scholar 

  51. Dørum A, Tonstad S, Liavaag AH, Michelsen TM, Hildrum B, Dahl AA (2008) Bilateral oophorectomy before 50 years of age is significantly associated with the metabolic syndrome and Framingham risk score: a controlled, population-based study (HUNT-2). Gynecol Oncol 109(3):377–383

    Google Scholar 

  52. Di Carlo C, Di Spiezio SA, Bifulco G, Tommaselli GA, Guerra G, Rippa E, Mandato VD, Nappi C (2007) Postmenopausal hypoestrogenism increases vasoconstrictor neuropeptides and decreases vasodilator neuropeptides content in arterial-wall autonomic terminations. Fertil Steril 88(1):95–99

    Google Scholar 

  53. Ebtekar F, Dalvand S, Ghanei R (2018) The prevalence of metabolic syndrome in postmenopausal women: a systematic review and meta-analysis in Iran. Diabetes Metab Syndr: Clin Res Rev 12(6):955–960

    Google Scholar 

  54. Howard BV, Kuller L, Langer R, Manson JE, Allen C, Assaf A, Cochrane BB, Larson JC, Lasser N, Rainford M, Van Horn L, Stefanick ML, Trevisan M (2005) Women's health initiative. Risk of cardiovascular disease by hysterectomy status, with and without oophorectomy: the women's health initiative observational study. Circulation 111(12):1462–1470

    Google Scholar 

  55. Mesch VR, Siseles NO, Maidana PN, Boero LE, Sayegh F, Prada M, Royer M, Schreier L, Benencia HJ, Berg GA (2008) Androgens in relationship to cardiovascular risk factors in the menopausal transition. Climacteric 11(6):509–517

    CAS  Google Scholar 

  56. Chedraui P, Hidalgo L, Chavez D, Morocho N, Alvarado M, Huc A (2007) Menopausal symptoms and associated risk factors among postmenopausal women screened for the metabolic syndrome. Arch Gynecol Obstet 275(3):161–168

    CAS  Google Scholar 

  57. Lumeng CN, Saltiel AR (2011) Inflammatory links between obesity and metabolic disease. J Clin Invest 121(6):2111–2117

    CAS  Google Scholar 

  58. Emanuela F, Grazia M, de Marco R, Maria Paola L, Giorgio F, Marco B (2012) Inflammation as a link between obesity and metabolic syndrome. J Nutr Metab 2012:476380

    Google Scholar 

  59. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N (2014) Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 105(2):141–150

    CAS  Google Scholar 

  60. Chen L, Chen R, Wang H, Liang F (2015) Mechanisms linking inflammation to insulin resistance. Int J Endocrinol 2015:508409

    Google Scholar 

  61. Rodríguez-Correa E, González-Pérez I, Clavel-Pérez PI, Contreras-Vargas Y, Carvajal K (2020) Biochemical and nutritional overview of diet-induced metabolic syndrome models in rats: what is the best choice? Nutr Diabetes 10:24

    Google Scholar 

  62. Lehnen AM, Rodrigues B, Irigoyen MC, De Angelis K, Schaan BD (2013) Cardiovascular changes in animal models of metabolic syndrome. J Diabetes Res 2013:761314

    Google Scholar 

  63. Wong SK, Chin KY, Suhaimi FH, Fairus A, Ima-Nirwana S (2016) Animal models of metabolic syndrome: a review. Nutr Metab (Lond) 13:65

    Google Scholar 

  64. Balderas-Villalobos J, Molina-Muñoz T, Mailloux-Salinas P, Bravo G, Carvajal K, Gómez-Viquez NL (2013) Oxidative stress in cardiomyocytes contributes to decreased SERCA2a activity in rats with metabolic syndrome. Am J Physiol Heart Circ Physiol 305(9):1344–1353

    Google Scholar 

  65. Zhang R, Su D, Zhu W, Huang Q, Liu M, Xue Y, Zhang Y, li D, Zhao A, Liu Y (2014) Estrogen suppresses adipogenesis by inhibiting S100A16 expression. J Mol Endocrinol 52(3):235–244

    CAS  Google Scholar 

  66. Niu L, Han DW, Xu RL, Han B, Zhou X, Wu HW, Li SH, Qu CX, Liu M (2016) A high-sugar high-fat diet induced metabolic syndrome shows some symptoms of alzheimer's disease in rats. J Nutr Health Aging 20(5):509–513

    CAS  Google Scholar 

  67. Pérez-Torres I, Roque P, El Hafidi M, Diaz-Diaz E, Baños G (2009) Association of renal damage and oxidative stress in a rat model of metabolic syndrome. Influ Gender Free Radic Res 43(8):761–771

    Google Scholar 

  68. Carvajal K, El Hafidi M, Marin-Hernández A, Moreno-Sánchez R (2005) Structural and functional changes in heart mitochondria from sucrose-fed hypertriglyceridemic rats. Biochim Biophys Acta 1709(3):231–239

    CAS  Google Scholar 

  69. Yamaguchi Y, Yoshikawa N, Kagota S, Nakamura K, Haginaka J, Kunitomo M (2006) Elevated circulating levels of markers of oxidative-nitrative stress and inflammation in a genetic rat model of metabolic syndrome. Nitric Oxide 15(4):380–386

    CAS  Google Scholar 

  70. Tawfik SH, Mahmoud BF, Saad MI, Shehata M, Kamel MA, Helmy MH (2015) Similar and additive effects of ovariectomy and diabetes on insulin resistance and lipid metabolism. Biochem Res Int 2015:567945

    Google Scholar 

  71. Fahmy MK, Sayyed HG, Elrahim EAA, Farag RTA (2018) Superimposed effect of ovariectomy on type 2 diabetes mellitus in Wistar rats. Alex J Med 54:129–137

    Google Scholar 

  72. Saengsirisuwan V, Pongseeda S, Prasannarong M, Vichaiwong K, Toskulkao C (2009) Modulation of insulin resistance in ovariectomized rats by endurance exercise training and estrogen replacement. Metabolism 58(1):38–47

    CAS  Google Scholar 

  73. Misso ML, Hewitt KN, Boon WC, Murata Y, Jones ME, Simpson ER (2005) Cholesterol feeding prevents adiposity in the obese female aromatase knockout (ArKO) mouse. Horm Metab Res 37(1):26–31

    CAS  Google Scholar 

  74. Bader MI, Wober J, Kretzschmar G, Zierau O, Vollmer G (2011) Comparative assessment of estrogenic responses with relevance to the metabolic syndrome and to menopausal symptoms in wild-type and aromatase-knockout mice. J Steroid Biochem Mol Biol 127(3–5):428–434

    CAS  Google Scholar 

  75. Choi EK, Kim WK, Sul OJ, Park YK, Kim ES, Suh JH, Yu R, Choi HS (2013) TNFRSF14 deficiency protects against ovariectomy-induced adipose tissue inflammation. J Endocrinol 220(1):25–33

    Google Scholar 

  76. Ribas V, Nguyen MT, Henstridge DC, Nguyen AK, Beaven SW, Watt MJ, Hevener AL (2010) Impaired oxidative metabolism and inflammation are associated with insulin resistance in ERalpha-deficient mice. Am J Physiol Endocrinol Metab 298(2):E304–E319

    CAS  Google Scholar 

  77. Zhu L, Martinez MN, Emfinger CH, Palmisano BT, Stafford JM (2014) Estrogen signaling prevents diet-induced hepatic insulin resistance in male mice with obesity. Am J Physiol Endocrinol Metab 306(10):E1188–E1197

    CAS  Google Scholar 

  78. Diaz Brinton R (2012) Minireview: translational animal models of human menopause: challenges and emerging opportunities. Endocrinology 153(8):3571–3578

    Google Scholar 

  79. Koebele SV, Bimonte-Nelson HA (2016) Modeling menopause: the utility of rodents in translational behavioral endocrinology research. Maturitas 87:5–17

    CAS  Google Scholar 

  80. Majumdar AS, Giri PR, Pai SA (2014) Resveratrol- and melatonin-abated ovariectomy and fructose diet-induced obesity and metabolic alterations in female rats. Menopause 21(8):876–885

    Google Scholar 

  81. Sivasinprasasn S, Sa-Nguanmoo P, Pratchayasakul W, Kumfu S, Chattipakorn SC, Chattipakorn N (2015) Obese-insulin resistance accelerates and aggravates cardiometabolic disorders and cardiac mitochondrial dysfunction in estrogen-deprived female rats. Age (Dordr) 37(2):28

    Google Scholar 

  82. Zhang L, Zhou M, Fang G, Tang Y, Chen Z, Liu X (2013) Hypocholesterolemic effect of capsaicinoids by increased bile acids excretion in ovariectomized rats. Mol Nutr Food Res 57:1080–1088

    CAS  Google Scholar 

  83. Bendale DS, Karpe PA, Chhabra R, Shete SP, Shah H, Tikoo K (2013) 17-β Oestradiol prevents cardiovascular dysfunction in post-menopausal metabolic syndrome by affecting SIRT1/AMPK/H3 acetylation. Br J Pharmacol 170(4):779–795

    CAS  Google Scholar 

  84. Hassan HA, Abdel-Wahhab MA (2012) Effect of soybean oil on atherogenic metabolic risks associated with estrogen deficiency in ovariectomized rats: dietary soybean oil modulate atherogenic risks in ovariectomized rats. J Physiol Biochem 68(2):247–253

    CAS  Google Scholar 

  85. Zhen PP, Duan JH, Zhao Q et al (2011) Phytoestrogen α-zearalanol improves vascular function in ovariectomized hyperhomocysteinemic rats. Atherosclerosis 215(2):309–315

    CAS  Google Scholar 

  86. Koyuncu FM, Ozbilgin K, Kuscu NK, Inan S, Vatansever S, Ceylan E (2006) The effect of oestradiol and neta on immunohistochemical staining of iNOS and eNOS in coronary arteries of ovariectomized rats. Histol Histopathol 21(4):367–371

    CAS  Google Scholar 

  87. Mohamed MT, Abuelezz SA, Atalla SS, El Aziz LFA, Gorge SS (2017) The anti-osteoporotic and anti-atherogenic effects of alendronate and simvastatin in ovariectomized rats fed high fat diet: a comparative study of combination therapy versus monotherapy. Biomed Pharmacothe 89:1115–1124

    CAS  Google Scholar 

  88. Wagner A, Dallongeville J, Haas B, Ruidavets JB, Amouyel P, Ferrières J, Simon C, Arveiler D (2012) Sedentary behaviour, physical activity and dietary patterns are independently associated with the metabolic síndrome. Diabetes Metabolism 38:428–435

    CAS  Google Scholar 

  89. Lee YL, Lin KL, Wu BN, Chuang SM, Wu WJ, Lee YC, Ho WT, Juan YS (2018) Epigallocatechin-3-gallate alleviates bladder overactivity in a rat model with metabolic syndrome and ovarian hormone deficiency through mitochondria apoptosis pathways. Sci Rep 8(1):5358

    Google Scholar 

  90. Medina-Contreras JML, Colado-Velázquez J 3rd, Gómez-Viquez NL, Mailloux-Salinas P, Pérez-Torres I, Aranda-Fraustro A, Carvajal K, Bravo G (2017) Effects of topical capsaicin combined with moderate exercise on insulin resistance, body weight and oxidative stress in hypoestrogenic obese rats. Int J Obes (Lond) 41(5):750–758

    CAS  Google Scholar 

  91. Kawvised S, Wattanathorn J, Thukham-Mee W (2017) Neuroprotective and cognitive-enhancing effects of microencapsulation of mulberry fruit extract in animal model of menopausal women with metabolic syndrome. Oxid Med Cell Longev 2017:2962316

    Google Scholar 

  92. Guerra RC, Zuñiga-Muñoz A, Guarner Lans V, Díaz-Díaz E, Tena Betancourt CA, Pérez-Torres I (2014) Modulation of the activities of catalase, cu-zn, mn superoxide dismutase, and glutathione peroxidase in adipocyte from ovariectomised female rats with metabolic syndrome. Int J Endocrinol 2014:175080

    Google Scholar 

  93. Tan Z, Zhou LJ, Mu PW, Liu SP, Chen SJ, Fu XD, Wang TH (2012) Caveolin-3 is involved in the protection of resveratrol against high-fat-diet-induced insulin resistance by promoting GLUT4 translocation to the plasma membrane in skeletal muscle of ovariectomized rats. J Nutr Biochem 23(12):1716–1724

    CAS  Google Scholar 

  94. Hamilton DJ, Minze LJ, Kumar T, Cao TN, Lyon CJ, Geiger PC, Hsueh WA, Gupte AA (2016) Estrogen receptor alpha activation enhances mitochondrial function and systemic metabolism in high-fat-fed ovariectomized mice. Physiol Rep 4(17):e12913

    Google Scholar 

  95. Prasannarong M, Vichaiwong K, Saengsirisuwan V (2012) Calorie restriction prevents the development of insulin resistance and impaired insulin signaling in skeletal muscle of ovariectomized rats. Biochim Biophys Acta 1822(6):1051–1061

    CAS  Google Scholar 

  96. Panneerselvam S, Packirisamy RM, Bobby Z, Elizabeth Jacob S, Sridhar MG (2016) Soy isoflavones (Glycine max) ameliorate hypertriglyceridemia and hepatic steatosis in high fat-fed ovariectomized Wistar rats (an experimental model of postmenopausal obesity). J Nutr Biochem 38:57–69

    CAS  Google Scholar 

  97. Pósa A, Szabó R, Kupai K, Csonka A, Szalai Z, Veszelka M, Török S, Daruka L, Varga C (2015) Exercise training and calorie restriction influence the metabolic parameters in ovariectomized female rats. Oxid Med Cell Longev 2015:787063

    Google Scholar 

  98. Morra EA, Rodrigues PL, Jesus ICG, Do Val Lima PR, Ávila RA, Zanardo TÉC, Nogueira BV, Bers DM, Guatimosim S, Stefanon I, Ribeiro Júnior RF (2018) Endurance training restores spatially distinct cardiac mitochondrial function and myocardial contractility in ovariectomized rats. Free Radic Biol Med 130:174–188

    Google Scholar 

  99. Newson L (2018) Menopause and cardiovascular disease. Post Reprod Health 24(1):44–49

    Google Scholar 

  100. Ahmed SB (2007) Menopause and chronic kidney disease. Semin Nephrol 37(4):404–411

    Google Scholar 

  101. Völzke H, Schwarz S, Baumeister SE, Wallaschofski H, Schwahn C, Grabe HJ, Kohlmann T, John U, Dören M (2007) Menopausal status and hepatic steatosis in a general female population. Gut 56(4):594–595

    Google Scholar 

  102. Babaei P, Mehdizadeh R, Ansar MM, Damirchi A (2010) Effects of ovariectomy and estrogen replacement therapy on visceral adipose tissue and serum adiponectin levels in rats. Menopause Int 16(3):100–104

    Google Scholar 

  103. Munhos Hermoso DA, Shimada LB, Gilglioni EH, Constantin J, Mito MS, Hermoso AP, Salgueiro-Pagadigorria CL, Iwamoto EL (2016) Melatonin protects female rats against steatosis and liver oxidative stress induced by oestrogen deficiency. Life Sci 157:178–186

    Google Scholar 

  104. Busserolles J, Mazur A, Gueux E, Rock E, Rayssiguier Y (2002) Metabolic syndrome in the rat: females are protected against the prooxidant effect of highsucrose diet. Exp Biol Med 227(9):837–842

    CAS  Google Scholar 

  105. Bitto A, Burnett BP, Polito F, Marini H, Levy RM, Armbruster MA, Minutoli L, Di Stefano V, Irrera N, Antoci S, Granese R, Squadrito F, Altavilla D (2008) Effects of genistein aglycone in osteoporotic, ovariectomized rats: a comparison with alendronate, raloxifene and oestradiol. Br J Pharmacol 155(6):896–905

    CAS  Google Scholar 

  106. Xu J, Xiang Q, Lin G, Fu X, Zhou K, Jiang P, Zheng S, Wang T (2012) Estrogen improved metabolic syndrome through down-regulation of VEGF and HIF-1α to inhibit hypoxia of periaortic and intra-abdominal fat in ovariectomized female rats. Mol Biol Rep 39(8):8177–8185

    CAS  Google Scholar 

  107. Rattanavichit Y, Chukijrungroat N, Saengsirisuwan V (2016) Sex differences in the metabolic dysfunction and insulin resistance of skeletal muscle glucose transport following high fructose ingestion. Am J Physiol Regul Integr Comp Physiol 311(6):1200–1212

    Google Scholar 

  108. Gorres BK, Bomhoff GL, Gupte AA, Geiger PC (2011) Altered estrogen receptor expression in skeletal muscle and adipose tissue of female rats fed a high-fat diet. J Appl Physiol 110(4):1046–1053

    CAS  Google Scholar 

  109. Park YM, Rector RS, Thyfault JP, Zidon TM, Padilla J, Welly RJ, Meers GM, Morris ME, Britton SL, Koch LG, Booth FW, Kanaley JA, Vieira-Potter VJ (2016) Effects of ovariectomy and intrinsic aerobic capacity on tissue-specific insulin sensitivity. Am J Physiol Endocrinol Metab 310(3):E190–E199

    Google Scholar 

  110. Rogers NH, Perfield JW 2nd, Strissel KJ, Obin MS, Greenberg AS (2009) Reduced energy expenditure and increased inflammation are early events in the development of ovariectomy-induced obesity. Endocrinology 150(5):2161–2168

    CAS  Google Scholar 

  111. Valencia AP, Schappal AE, Morris EM, Thyfault JP, Lowe DA, Spangenburg EE (2016) The presence of the ovary prevents hepatic mitochondrial oxidative stress in young and aged female mice through glutathione peroxidase. Exp Gerontol 73:14–22

    CAS  Google Scholar 

  112. Choi EK, Rajasekaran M, Sul OJ, Joe Y, Chung HT, Yu R, Choi HS (2018) Impaired insulin signaling upon loss of ovarian function is associated with a reduction of tristetraprolin and an increased stabilization of chemokine in adipose tissue. Mol Cell Endocrinol 461:122–131

    CAS  Google Scholar 

  113. Ben-Shmuel S, Scheinman EJ, Rashed R, Orr ZS, Gallagher EJ, LeRoith D, Rostoker R (2015) Ovariectomy is associated with metabolic impairments and enhanced mammary tumor growth in MKR mice. J Endocrinol 227(3):143–151

    CAS  Google Scholar 

  114. Tominaga K, Yamauchi A, Egawa T, Tanaka R, Kawahara S, Shuto H, Kataoka Y (2011) Vascular dysfunction and impaired insulin signaling in high-fat diet fed ovariectomized mice. Microvasc Res 82(2):171–176

    CAS  Google Scholar 

  115. Dalmasso C, Maranon R, Patil C, Bui E, Moulana M, Zhang H, Smith A, Yanes Cardozo LL, Reckelhoff JF (2016) Cardiometabolic effects of chronic hyperandrogenemia in a new model of postmenopausal polycystic ovary syndrome. Endocrinology 157(7):2920–2927

    CAS  Google Scholar 

  116. Maliqueo M, Sun M, Johansson J, Benrick A, Labrie F, Svensson H, Lönn M, Duleba AJ, Stener-Victorin E (2013) Continuous administration of a P450 aromatase inhibitor induces polycystic ovary syndrome with a metabolic and endocrine phenotype in female rats at adult age. Endocrinology 154(1):434–445

    CAS  Google Scholar 

  117. Romero-Aleshire MJ, Diamond-Stanic MK, Hasty AH, Hoyer PB, Brooks HL (2009) Loss of ovarian function in the VCD mouse-model of menopause leads to insulin resistance and a rapid progression into the metabolic syndrome. Am J Physiol Regul Integr Comp Physiol 297(3):R587–R592

    CAS  Google Scholar 

  118. Borbélyová V, Domonkos E, Bábíčková J, Tóthová Ľ, Kačmárová M, Uličná O, Ostatníková D, Hodosy J, Celec P (2017) Does long-term androgen deficiency lead to metabolic syndrome in middle-aged rats? Exp Gerontol 98:38–46

    Google Scholar 

  119. Iwasa T, Matsuzaki T, Yano K, Yiliyasi M, Kuwahara A, Matsui S, Irahara M (2018) Effects of chronic testosterone administration on the degree of preference for a high-fat diet and body weight in gonadal-intact and ovariectomized female rats. Behav Brain Res 349:102–108

    CAS  Google Scholar 

Download references

Acknowledgements

JMLMC and JBV were postdoctoral fellows supported by Consejo Nacional de Ciencia y Tecnología (CONACYT). Authors thank PAPIIT, DGAPA, UNAM for Grant IN227116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Balderas-Villalobos.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina-Contreras, J., Villalobos-Molina, R., Zarain-Herzberg, A. et al. Ovariectomized rodents as a menopausal metabolic syndrome model. A minireview. Mol Cell Biochem 475, 261–276 (2020). https://doi.org/10.1007/s11010-020-03879-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03879-4

Keywords

Navigation