Skip to main content

Advertisement

Log in

The involvement of bioactive factors in the self-renewal and stemness maintenance of spermatogonial stem cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Spermatogenesis is usually accompanied throughout mammalian lifetime, transmitting genetic information to the next generation, which is mainly dependent on the self-renewal and differentiation of spermatogonial stem cells (SSCs). With further investigation on profiles of SSCs, the previous prevailing orthodoxy that SSCs are unipotent stem cells to differentiate into spermatids only, has been challenged. More notably, accumulating evidence has demonstrated that SSCs are capable of giving rise to cell lineages of the three germ layers, highlighting potential important applications of SSCs for regenerative medicine. Nevertheless, it is unknown how the proliferation and stemness maintenance of SSCs are regulated intrinsically and strictly controlled in a special niche microenvironment in the seminiferous tubules. Based on the special niche microenvironment for SSCs, it is of vital interest to summarize the recent knowledge regarding several critical bioactive molecules in the self-renewal and stemness maintenance of SSCs. In this review, we discuss most recent findings about these critical bioactive factors and further address the new advances on the self-renewal and stemness maintenance of SSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sharma S, Wistuba J, Pock T, Schlatt S et al (2019) Spermatogonial stem cells: updates from specification to clinical relevance. Hum Reprod Update 25:275–297

    Article  CAS  PubMed  Google Scholar 

  2. Mäkelä JA, Hobbs RM (2019) Molecular regulation of spermatogonial stem cell renewal and differentiation. Reproduction 158:R169–R187

    Article  PubMed  Google Scholar 

  3. Kanatsu-Shinohara M, Inoue K, Takashima S et al (2012) Reconstitution of mouse spermatogonial stem cell niches in culture. Cell Stem Cell 11:567–578

    Article  CAS  PubMed  Google Scholar 

  4. Kubota H, Avarbock MR, Brinster RL (2004) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 101:16489–16494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Masaki K, Sakai M, Kuroki S et al (2018) FGF2 has distinct molecular functions from GDNF in the mouse germline niche. Stem Cell Rep 10:1782–1792

    Article  CAS  Google Scholar 

  6. Sakai M, Masaki K, Aiba S et al (2018) Expression dynamics of self-renewal factors for spermatogonial stem cells in the mouse testis. J Reprod Dev 64:267–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Campos-Junior PH, Costa GM, Lacerda SM et al (2012) The spermatogonial stem cell niche in the collared peccary (Tayassu tajacu). Biol Reprod 86:1551–1510

    Article  Google Scholar 

  8. Grive KJ, Hu Y, Shu E et al (2019) Dynamic transcriptome profiles within spermatogonial and spermatocyte populations during postnatal testis maturation revealed by single-cell sequencing. PLoS Genet 15:e1007810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takashima S, Kanatsu-Shinohara M, Tanaka T (2015) Functional differences between GDNF-dependent and FGF2-dependent mouse spermatogonial stem cell self-renewal. Stem Cell Rep 4:489–502

    Article  CAS  Google Scholar 

  10. Faisal I, Cisneros-Montalvo S, Hamer G et al (2019) Transcription factor USF1 is required for maintenance of germline stem cells in male mice. Endocrinology 60:1119–1136

    Article  Google Scholar 

  11. Chen C, Ouyang W, Grigura V et al (2005) ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature 436:1030–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou R, Wu J, Liu B et al (2019) The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis. Cell Mol Life Sci 76:2681–2269

    Article  CAS  PubMed  Google Scholar 

  13. Neto FT, Bach PV, Najari BB, Li PS, Goldstein M et al (2016) Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol 59:10–26

    Article  PubMed  Google Scholar 

  14. Dettin L, Ravindranath N, Hofmann MC, Dym M (2003) Morphological characterization of the spermatogonial subtypes in the neonatal mouse testis. Biol Reprod 69:1565–1571

    Article  CAS  PubMed  Google Scholar 

  15. Hai YN, Hou JM, Liu Y et al (2014) The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis. Semin Cell Dev Biol 29:66–75

    Article  CAS  PubMed  Google Scholar 

  16. Fayomi AP, Orwig KE (2018) Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res 29:207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lord T, Oatley JM (2017) A revised A (single) model to explain stem cell dynamics in the mouse male germline. Reproduction 154:R55–R64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hermann BP, Sukhwani M, Hansel MC, Orwig KE (2010) Spermatogonial stem cells in higher primates: are there differences from those in rodents? Reproduction 139:479–493

    Article  CAS  PubMed  Google Scholar 

  19. Grisanti L, Falciatori I, Grasso M et al (2009) Identification of spermatogonial stem cell subsets by morphological analysis and prospective isolation. Stem Cells 27:3043–3052

    Article  CAS  PubMed  Google Scholar 

  20. Garcia TX, Parekh P, Gandhi P, Sinha K (2017) The NOTCH ligand JAG1 regulates GDNF expression in Sertoli cells. Stem Cells Dev 26:585–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharma M, Braun RE (2018) Cyclical expression of GDNF is required for spermatogonial stem cell homeostasis. Development 145:dev151555

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dirami G, Ravindranath N, Achi MV, Dym M (2001) Expression of Notch pathway components in spermatogonia and Sertoli cells of neonatal mice. J Androl 22:944–952

    Article  CAS  PubMed  Google Scholar 

  23. Verhoeven G, Hoeben E, De Gendt K (2000) Peritubular cell-Sertoli cell interactions: factors involved in PmodS activity. Andrologia 32:42–45

    CAS  PubMed  Google Scholar 

  24. Eacker SM, Agrawal N, Qian K et al (2008) Hormonal regulation of testicular steroid and cholesterol homeostasis. Mol Endocrinol 22:623–635

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka T, Kanatsu-Shinohara M, Lei Z, Rao CV et al (2016) The luteinizing hormone-testosterone pathway regulates mouse spermatogonial stem cell self-renewal by suppressing WNT5A expression in Sertoli cells. Stem Cell Rep 7:279–291

    Article  CAS  Google Scholar 

  26. Wang S, Wang X, Wu Y, Han C (2015) IGF-1R signaling is essential for the proliferation of cultured mouse spermatogonial stem cells by promoting the G2/M progression of the cell cycle. Stem Cells Dev 24:471–483

    Article  CAS  PubMed  Google Scholar 

  27. O’Shaughnessy PJ (2014) Hormonal control of germ cell development and spermatogenesis. Semin Cell Dev Biol 29:55–65

    Article  PubMed  Google Scholar 

  28. Defalco T, Saraswathula A, Briot A et al (2013) Testosterone levels influence mouse fetal Leydig cell progenitors through notch signaling. Biol Reprod 88:91

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kamińska A, Marek S, Pardyak L et al (2020) Disruption of androgen signaling during puberty affects Notch pathway in rat seminiferous epithelium. Reprod Biol Endocrinol 18:30

    Article  PubMed  PubMed Central  Google Scholar 

  30. Willems A, Roesl C, Mitchell RT et al (2015) Sertoli cell androgen receptor signaling in adulthood is essential for post-meiotic germ cell development. Mol Reprod Dev 82:626–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ibanez CF, Andressoo JO (2017) Biology of GDNF and its receptors—relevance for disorders of the central nervous system. Neurobiol Dis 97:80–89

    Article  CAS  PubMed  Google Scholar 

  32. Kim M, Kim DJ (2018) GFRA1: a novel molecular target for the prevention of osteosarcoma chemoresistance. Int J Mol Sci 19(4):107

    Article  Google Scholar 

  33. Tadokoro Y, Yomogida K, Ohta H et al (2002) Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway. Mech Dev 113:29–39

    Article  CAS  PubMed  Google Scholar 

  34. Bhang DH, Kim BJ, Kim BG et al (2018) Testicular endothelial cells are a critical population in the germline stem cell niche. Nat Commun 9:4379

    Article  PubMed  PubMed Central  Google Scholar 

  35. Oatley JM, Avarbock MR, Brinster RL (2007) Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. J Biol Chem 282:25842–25851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Uchida A, Kishi K, Aiyama Y et al (2016) In vivo dynamics of GFRalpha1-positive spermatogonia stimulated by GDNF signals using a bead transplantation assay. Biochem Biophys Res Commun 476:546–552

    Article  CAS  PubMed  Google Scholar 

  37. Kanatsu-Shinohara M, Shinohara T (2013) Spermatogonial stem cell self-renewal and development. Annu Rev Cell Dev Biol 29:163–187

    Article  CAS  PubMed  Google Scholar 

  38. Meng X, Lindahl M, Hyvönen ME et al (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287:1489–1493

    Article  CAS  PubMed  Google Scholar 

  39. Naughton CK, Jain S, Strickland AM et al (2006) Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod 74:314–321

    Article  CAS  PubMed  Google Scholar 

  40. Jing S, Wen D, Yu Y et al (1996) GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 85:1113–1124

    Article  CAS  PubMed  Google Scholar 

  41. Lee J, Kanatsu-Shinohara M, Inoue K et al (2007) Akt mediates self-renewal division of mouse spermatogonial stem cells. Development 134:1853–1859

    Article  CAS  PubMed  Google Scholar 

  42. Sada A, Hasegawa K, Pin PH, Saga Y (2012) NANOS2 acts downstream of glial cell line-derived neurotrophic factor signaling to suppress differentiation of spermatogonial stem cells. Stem Cells 30:280–291

    Article  CAS  PubMed  Google Scholar 

  43. Kitadate Y, Jorg DJ, Tokue M et al (2019) Competition for mitogens regulates spermatogenic stem cell homeostasis in an open niche. Cell Stem Cell 24:79–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang Y, Wang S, Wang XX et al (2012) Endogenously produced FGF2 is essential for the survival and proliferation of cultured mouse spermatogonial stem cells. Cell Res 22:773–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mirzapour T, Movahedin M, Tengku Ibrahim TA et al (2012) Effects of basic fibroblast growth factor and leukaemia inhibitory factor on proliferation and short-term culture of human spermatogonial stem cells. Andrologia 44:41–55

    Article  PubMed  Google Scholar 

  46. Ishii K, Kanatsu-Shinohara M, Toyokuni S, Shinohara T (2012) FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation. Development 139:1734–1743

    Article  CAS  PubMed  Google Scholar 

  47. Tokue M, Ikami K, Mizuno S et al (2017) SHISA6 confers resistance to differentiation-promoting wnt/beta-catenin signaling in mouse spermatogenic stem cells. Stem Cell Rep 8:561–575

    Article  CAS  Google Scholar 

  48. Nicola NA, Babon JJ (2015) Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev 26:533–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Todaro F, Campolo F, Barrios F et al (2019) Regulation of kit expression in early mouse embryos and ES cells. Stem Cells 37:332–344

    Article  CAS  PubMed  Google Scholar 

  50. Dorval-Coiffec I, Delcros JG, Hakovirta H, Toppari J, Jégou B, Piquet-Pellorce C (2005) Identification of the leukemia inhibitory factor cell targets within the rat testis. Biol Reprod 72:602–611

    Article  CAS  PubMed  Google Scholar 

  51. del Valle I, Rudloff S, Carles A et al (2013) E-cadherin is required for the proper activation of the Lifr/Gp130 signaling pathway in mouse embryonic stem cells. Development 140:1684–1692

    Article  PubMed  Google Scholar 

  52. Ke M, He Q, Hong D et al (2018) Leukemia inhibitory factor regulates marmoset induced pluripotent stem cell proliferation via a PI3K/Akt-dependent Tbx-3 activation pathway. Int J Mol Med 42:131–140

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Graf U, Casanova EA, Cinelli P (2011) The role of the leukemia inhibitory factor (LIF)-pathway in derivation and maintenance of murine pluripotent stem cells. Genes (Basel) 2:280–297

    Article  CAS  Google Scholar 

  54. Liu T, Guo L, Liu Z, Cheng W (2011) Human amniotic epithelial cells maintain mouse spermatogonial stem cells in an undifferentiated state due to high leukemia inhibitor factor (LIF) expression. In Vitro Cell Dev Biol Anim 47:318–326

    Article  CAS  PubMed  Google Scholar 

  55. Martin LA, Seandel M (2013) Propagation of adult SSCs: from mouse to human. Biomed Res Int 2013:384734

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kanatsu-Shinohara M, Ogonuki N, Miki H et al (2007) Leukemia inhibitory factor enhances formation of germ cell colonies in neonatal mouse testis culture. Biol Reprod 76:55–62

    Article  CAS  PubMed  Google Scholar 

  57. Wang P, Suo LJ, Wang YF et al (2014) Effects of GDNF and LIF on mouse spermatogonial stem cells proliferation in vitro. Cytotechnology 66:309–316

    Article  CAS  PubMed  Google Scholar 

  58. Rastegar T, Habibi Roudkenar M, Parvari S, Baazm M (2015) The interaction between Sertoli cells and leukemia inhibitory factor on the propagation and differentiation of spermatogonial stem cells in vitro. Iran J Reprod Med 13:679–686

    PubMed  PubMed Central  Google Scholar 

  59. Janssens R, Struyf S, Proost P (2018) The unique structural and functional features of CXCL12. Cell Mol Immunol 15:299–311

    Article  CAS  PubMed  Google Scholar 

  60. Janssens R, Struyf S, Proost P (2018) Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev 44:51–68

    Article  CAS  PubMed  Google Scholar 

  61. Collins PJ, McCully ML, Martínez-Muñoz L et al (2017) Epithelial chemokine CXCL14 synergizes with CXCL12 via allosteric modulation of CXCR4. FASEB J 31:3084–3097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang Q, Kim D, Kaucher A et al (2013) CXCL12-CXCR4 signaling is required for the maintenance of mouse spermatogonial stem cells. J Cell Sci 126:1009–1020

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Park HJ, Lee WY, Kim JH et al (2018) Expression patterns and role of SDF-1/CXCR4 axis in boar spermatogonial stem cells. Theriogenology 113:221–228

    Article  CAS  PubMed  Google Scholar 

  64. Ara T, Nakamura Y, Egawa T et al (2003) Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1). Proc Natl Acad Sci U S A 100:5319–5323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mahabaleshwar H, Boldajipour B, Raz E (2008) Killing the messenger: the role of CXCR7 in regulating primordial germ cell migration. Cell Adhes Migr 2:69–70

    Article  Google Scholar 

  66. Chen SR, Liu YX (2015) Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling. Reproduction 149:R159–R167

    Article  CAS  PubMed  Google Scholar 

  67. Dambly-Chaudière C, Cubedo N, Ghysen A (2007) Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Dev Biol 7:2

  68. Niu Z, Goodyear SM, Avarbock MR, Brinster RL (2016) Chemokine (C-X-C) ligand 12 facilitates trafficking of donor spermatogonial stem cells. Stem Cells Int 2016:5796305

    Article  PubMed  PubMed Central  Google Scholar 

  69. Payne CJ, Gallagher SJ, Foreman O et al (2010) Sin3a is required by Sertoli cells to establish a niche for undifferentiated spermatogonia, germ cell tumors, and spermatid elongation. Stem Cells 28:1424–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kumari A, Silakari O, Singh RK (2018) Recent advances in colony stimulating factor-1 receptor/c-FMS as an emerging target for various therapeutic implications. Biomed Pharmacother 103:662–679

    Article  CAS  PubMed  Google Scholar 

  71. Hienz SA, Paliwal S, Ivanovski S (2015) Mechanisms of bone resorption in periodontitis. J Immunol Res 2015:615486

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chockalingam S, Ghosh SS (2014) Macrophage colony-stimulating factor and cancer: a review. Tumor Biol 35:10635–10644

    Article  CAS  Google Scholar 

  73. Zhu Y, Yang J, Xu D et al (2019) Disruption of tumour-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signalling sensitises hepatocellular carcinoma to anti-PD-L1 blockade. Gut 68:1653–1666

    Article  CAS  PubMed  Google Scholar 

  74. Crotti C, Agape E, Becciolini A et al (2019) Targeting granulocyte-monocyte colony-stimulating factor signaling in rheumatoid arthritis: future prospects. Drugs 79:1741–1755

    Article  CAS  PubMed  Google Scholar 

  75. Hume DA, MacDonald KP (2012) Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 119:1810–1820

    Article  CAS  PubMed  Google Scholar 

  76. El-Gamal MI, Al-Ameen SK, Al-Koumi DM et al (2018) Recent advances of colony-stimulating factor-1 receptor (CSF-1R) kinase and its inhibitors. J Med Chem 61:5450–5466

    Article  CAS  PubMed  Google Scholar 

  77. Oatley JM, Oatley MJ, Avarbock MR et al (2009) Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development 136:1191–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yoshida S, Sukeno M, Nabeshima Y (2007) A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317:1722–1726

    Article  CAS  PubMed  Google Scholar 

  79. Shima JE, McLean DJ, McCarrey JR et al (2004) The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biol Reprod 71:319–330

    Article  CAS  PubMed  Google Scholar 

  80. Ryan GR, Dai XM, Dominguez MG et al (2001) Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood 98:74–84

    Article  CAS  PubMed  Google Scholar 

  81. DeFalco T, Potter SJ, Williams AV et al (2015) Macrophages contribute to the spermatogonial niche in the adult testis. Cell Rep 12:1107–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Potter SJ, DeFalco T (2017) Role of the testis interstitial compartment in spermatogonial stem cell function. Reproduction 153:R151–R162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lennartsson J, Rönnstrand L (2012) Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev 92:1619–1649

    Article  CAS  PubMed  Google Scholar 

  84. Sakurai M, Iwasa R, Sakai Y et al (2018) Expression of stem cell factor in feline mast cell tumour. J Comp Pathol 163:6–9

    Article  CAS  PubMed  Google Scholar 

  85. Zhou BO, Yu H, Yue R et al (2017) Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol 19:891–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fujio K, Hu Z, Evarts RP et al (1996) Coexpression of stem cell factor and c-kit in embryonic and adult liver. Exp Cell Res 224:243–250

    Article  CAS  PubMed  Google Scholar 

  87. Ohta H, Yomogida K, Dohmae K, Nishimune Y (2000) Regulation of proliferation and differentiation in spermatogonial stem cells: the role of c-kit and its ligand SCF. Development 127:2125–2131

    Article  CAS  PubMed  Google Scholar 

  88. Rossi P, Sette C, Dolci S, Geremia R (2000) Role of c-kit in mammalian spermatogenesis. J Endocrinol Invest 23:609–615

    Article  CAS  PubMed  Google Scholar 

  89. Blume-Jensen P, Jiang G, Hyman R et al (2000) Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3′-kinase is essential for male fertility. Nat Genet 24:157–162

    Article  CAS  PubMed  Google Scholar 

  90. Guerif F, Cadoret V, Rahal-Perola V et al (2002) Apoptosis, onset and maintenance of spermatogenesis: evidence for the involvement of Kit in Kit-haplodeficient mice. Biol Reprod 67:70–79

    Article  CAS  PubMed  Google Scholar 

  91. Khodadi E, Shahrabi S, Shahjahani M et al (2016) Role of stem cell factor in the placental niche. Cell Tissue Res 366:523–531

    Article  CAS  PubMed  Google Scholar 

  92. Lee Y, Jung J, Cho KJ (2013) Increased SCF/c-kit by hypoxia promotes autophagy of human placental chorionic plate-derived mesenchymal stem cells via regulating the phosphorylation of mTOR. J Cell Biochem 114:79–88

    Article  CAS  PubMed  Google Scholar 

  93. Choi YJ, Ok DW, Kwon DN et al (2004) Murine male germ cell apoptosis induced by busulfan treatment correlates with loss of c-kit-expression in a Fas/FasL- and p53-independent manner. FEBS Lett 575:41–51

    Article  CAS  PubMed  Google Scholar 

  94. Nurmio M, Kallio J, Toppari J, Jahnukainen K (2008) Adult reproductive functions after early postnatal inhibition by imatinib of the two receptor tyrosine kinases, c-kit and PDGFR, in the rat testis. Reprod Toxicol 25:442–446

    Article  CAS  PubMed  Google Scholar 

  95. Dolci S, Pellegrini M, Di Agostino S et al (2001) Signaling through extracellular signal-regulated kinase is required for spermatogonial proliferative response to stem cell factor. J Biol Chem 276:40225–40233

    Article  CAS  PubMed  Google Scholar 

  96. Hasegawa K, Namekawa SH, Saga Y (2013) MEK/ERK signaling directly and indirectly contributes to the cyclical self-renewal of spermatogonial stem cells. Stem Cells 31:2517–2527

    Article  CAS  PubMed  Google Scholar 

  97. Agarwal S, Kazi JU, Rönnstrand L (2013) Phosphorylation of the activation loop tyrosine 823 in c-Kit is crucial for cell survival and proliferation. J Biol Chem 288:22460–22468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Huleihel M, Fadlon E, Abuelhija A et al (2013) Glial cell line-derived neurotrophic factor (GDNF) induced migration of spermatogonial cells in vitro via MEK and NF-kB pathways. Differentiation 86:38–47

    Article  CAS  PubMed  Google Scholar 

  99. Wang M, Guo Y, Wang M et al (2017) The glial cell-derived neurotrophic factor (GDNF)-responsive phosphoprotein landscape identifies raptor phosphorylation required for spermatogonial progenitor cell proliferation. Mol Cell Proteomics 16:982–997

    Article  PubMed  PubMed Central  Google Scholar 

  100. Parekh PA, Garcia TX, Hofmann MC (2019) Regulation of GDNF expression in Sertoli cells. Reproduction 157:95–107

    Google Scholar 

  101. Zuo QS, Jin J, Jin K et al (2019) Distinct roles of retinoic acid and BMP4 pathways in the formation of chicken primordial germ cells and spermatogonial stem cells. Food Funct 10:7152–7163

    Article  CAS  PubMed  Google Scholar 

  102. Yoon KA, Chae YM, Cho JY (2009) FGF2 stimulates SDF-1 expression through the Erm transcription factor in Sertoli cells. J Cell Physiol 220:245–256

    Article  CAS  PubMed  Google Scholar 

  103. Hess RA, Cooke PS, Hofmann MC, Murphy KM (2006) Mechanistic insights into the regulation of the spermatogonial stem cell niche. Cell Cycle 5:1164–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cooke PS, Hess RA, Simon L, Schlesser HN et al (2006) The transcription factor Ets-Related Molecule (ERM) is essential for spermatogonial stem cell maintenance and self-renewal. Anim Reprod 3:98–107

    Google Scholar 

  105. Niimi Y, Imai A, Nishimura H et al (2019) Essential role of mouse Dead end1 in the maintenance of spermatogonia. Dev Biol 445:103–112

    Article  CAS  PubMed  Google Scholar 

  106. Suzuki A, Niimi Y, Shinmyozu K et al (2016) Dead end1 is an essential partner of NANOS2 for selective binding of target RNAs in male germ cell development. EMBO Rep 17:37–46

    Article  CAS  PubMed  Google Scholar 

  107. Imai A, Hagiwara Y, Niimi Y et al (2020) Mouse dead end1 acts with Nanos2 and Nanos3 to regulate testicular teratoma incidence. PLoS One 15:e0232047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li L, Wang M, Wang M et al (2016) A long non-coding RNA interacts with Gfra1 and maintains survival of mouse spermatogonial stem cells. Cell Death Dis 7:e2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Costoya JA, Hobbs RM, Barna M et al (2004) Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 36:653–659

    Article  CAS  PubMed  Google Scholar 

  110. Wang J, Li J, Xu W et al (2019) Androgen promotes differentiation of PLZF(+) spermatogonia pool via indirect regulatory pattern. Cell Commun Signal 17:57

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation Item of China (No. 81371411 81830077, 81772357 and 82071551), Natural Science Foundation of Shaanxi Province (2020JM-686), and Xi’an Science and Technology Research Project (2019114913YX004SF037(3)).

Author information

Authors and Affiliations

Authors

Contributions

GQY and YQH were responsible for preliminary draft and references. HY was responsible for the overall planning and design of review and paper revision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hao Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., He, Y. & Yang, H. The involvement of bioactive factors in the self-renewal and stemness maintenance of spermatogonial stem cells. Mol Cell Biochem 476, 1813–1823 (2021). https://doi.org/10.1007/s11010-020-04028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-04028-7

Keywords

Navigation