Skip to main content
Log in

Investigation of the Thermomechanical Behavior of a 2 × 2 TWILL Weave Fabric Advanced Textile Composite

  • Published:
Mechanics of Composite Materials Aims and scope

The thermomechanical performance of a 2 × 2 twill weave fabric advanced textile composite was evaluated. The tensile, compressive, and flexural properties of flat beam specimens of the composite were tested at room temperature, in water (24.9 to 96.7°C), and in liquid nitrogen (−96.9 to 99.4°C) by using a high-precision instrument called the dynamic mechanical analyzer (DMA). The storage modulus and tanδ of the carbonfiber-reinforced plastic (CFRP) specimens at various temperatures were evaluated. The scanning electron micrograph (SEMs) of deformed composite specimens revealed their failure mode (fiber pull-out, debonding, crack propagation, delamination, matrix cracking, and kinking of fibers).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ch. M. Pastore, “Opportunities and challenges for textile reinforced composites,” Mech. Compos. Mater., 36, No. 2, 97–116 (2000).

    Article  Google Scholar 

  2. A. V. Roze and I. G. Zhigun, “Three-dimensional reinforced fabric materials. 1. Calculation model,” Polym. Mech., 6, No. 2, 272–278 (1970).

    Article  Google Scholar 

  3. A Dixit and H. S. Mali, “Modelling techniques for predicting the mechanical properties of woven-fabric textile composites: A Review”, Mech. Compos. Mater., 49, No. 1, 1–20 (2013).

    Article  Google Scholar 

  4. W. L. Wu, M. Kotaki, H Hamada, and Z. I. Maekawa, “Mechanical properties of warp-knitted, fabric-reinforced composites,” J. Reinforced Plastics and Composites, 12, No. 10, 1096–1110 (1993).

    Article  Google Scholar 

  5. L. Tong, A. P. Mouritz, and M. K. Bannister, 3D Fiber Reinforced Polymer Composites, Elsevier, ISBN: 0-08-043938-1, (2002).

  6. M. Takeno, S. Nishijima, T. Okada, K. Fujioka, Y. Tsuchida, and Y. Kuraoka, “Thermal and mechanical properties of advanced composite materials at low temperatures,” Advances in Cryogenic Engineering Materials, 32, 217–224 (1986).

    Google Scholar 

  7. E. S. Molchanov, V. E. Yudin, K. A. Kydralieva and V. Yu. Elokhovskii, “Comparison of the thermomechanical characteristics of porcher carbon fabric-based composites for orthopaedic applications,” Mech. Compos. Mater., 47, No. 3, 343–350 (2012).

    Article  Google Scholar 

  8. S. Benyoucef, A. Tounsi, R. Yeghnem, M. Bachir Bouiadjra, and E.A. Adda Bedia, “An analysis of interfacial stresses in steel beams bonded with a thin composite plate under thermomechanical loading,” Mech. Compos. Mater., 49, No. 6, 641–650 (2014).

    Article  Google Scholar 

  9. N. K. Kucher, M. N. Zarazovskii, and E. L. Danil’chuk, “Deformation and strength of laminated carbon-fiber-reinforced plastics under a static thermo mechanical loading,” Mech. Compos. Mater., 48, No. 6, 669–680 (2013).

    Article  Google Scholar 

  10. A. Dixit, H. S. Mali, and R. K. Misra, “A Micromechanical unit cell model of 2×2 twill woven fabric textile composite for multi scale analysis,” J. of Institution of Engineers (India): Series E, 95, No. 1, 1–9 (2014).

    Article  Google Scholar 

  11. N Khokar, “3D fabric-forming process: distinguishing between 2D-weaving, 3D-weaving and an unspecified noninterlacing process,” J. Textile Inst, 87, No.1, 97–106 (1996).

    Article  Google Scholar 

  12. A. Dixit, R. K. Misra, and H.S. Mali, “Compression modeling of plain weave textile fabric using finite elements,” Materialwissenschaft und Werkstofftechnik, 45, No.7, 600–610 (2014).

    Article  Google Scholar 

  13. V. Kalkis, R. D. Maksimov, M. Kalnins, J. Zicans, T. Bocoka, and O. Revjakin, “Thermomechanical and adhesive properties of radiation-modified polymer composites for thermosetting products,” Mech. Compos. Mater., 36, No.3, 223–232 (2000).

    Article  Google Scholar 

  14. E. Zile and V. Tamuzs, “Mode II delamination of a unidirectional carbon fiber/epoxy composite in four-point bend end-notched flexure tests,” Mech. Compos. Mater., 41, No. 5, 383–390 (2005).

    Article  Google Scholar 

  15. Yu. M. Tarnopol’skii and V. L. Kulakov, “Tests methods for composites — Survey of investigations carried out at the IPM of the Latvian Academy of Sciences in 1964–2000,” Mech. Compos. Mater., 37, No. 5/6, 431–448 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dixit.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 51, No. 2, pp. 361–374 , March-April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, A., Mali, H.S. & Misra, R.K. Investigation of the Thermomechanical Behavior of a 2 × 2 TWILL Weave Fabric Advanced Textile Composite. Mech Compos Mater 51, 253–264 (2015). https://doi.org/10.1007/s11029-015-9497-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-015-9497-4

Keywords

Navigation