Skip to main content
Log in

Construction of a genetic linkage map of an interspecific diploid blueberry population and identification of QTL for chilling requirement and cold hardiness

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A genetic linkage map has been constructed from an interspecific diploid blueberry population [(Vaccinium darrowii Fla4B × Vaccinium corymbosum W85-20) F1#10 × V. corymbosum W85-23] designed to segregate for cold hardiness and chilling requirement. The map is comprised of 12 linkage groups (equivalent to the haploid chromosome number of diploid blueberry) and totals 1,740 cM. Included on the map are 265 markers based on simple sequence repeats, expressed sequence tag-polymerase chain reactions, single nucleotide polymorphisms, and randomly amplified polymorphic DNAs. The estimated map coverage is 89.9 %, and the average distance between markers is 7.2 cM. The mapping population was evaluated for 2 years (2009 and 2010) for mid-winter bud cold hardiness and for 3 years (2011–2013) for chilling requirement under controlled conditions. Broad-sense heritability of both cold hardiness and chilling requirement was quite high under these conditions with values of 0.88 and 0.86, respectively. One quantitative trait locus/loci (QTL) for cold hardiness and one for chilling requirement were identified that were consistent over at least 2 years. A second weaker QTL for chilling requirement was detected in only one of the 3 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CH:

Cold hardiness

CR:

Chilling requirement

CR50:

Chill units resulting in 50 % floral bud break

EST-PCR:

Expressed sequence tag-polymerase chain reaction

H :

Broad-sense heritability

HRM:

High-resolution melting

IM:

Interval mapping

LOD:

Logarithm of the odds

LT50:

Lethal temperature causing 50 % injury

PM:

Permutation test

QTL:

Quantitative trait locus/loci

RAPD:

Randomly amplified polymorphic DNA

rMQM:

Restricted multiple QTL mapping

SNP:

Single nucleotide polymorphism

SRA:

Sequence read archive

SSR:

Simple sequence repeat

References

  • Arora R, Rowland LJ, Lehman JS, Lim CC, Panta GR, Vorsa N (2000) Genetic analysis of freezing tolerance in blueberry (Vaccinium section Cyanococcus). Theor Appl Genet 100:690–696

    Google Scholar 

  • Arora R, Rowland LJ, Ogden EL, Dhanaraj AL, Marian CO, Ehlenfeldt MK, Vinyard B (2004) Dehardening kinetics, bud development, and dehydrin metabolism in blueberry (Vaccinium spp.) cultivars during deacclimation at constant, warm temperatures. J Am Soc Hortic Sci 129:667–674

    CAS  Google Scholar 

  • Avia K, Pilet-Nayel M-L, Bahrman N, Baranger A, Delbreil B, Fontaine V, Hamon C, Hanocq E, Niarquin M, Sellier H, Vuylsteker C, Prosperi J-M, Lejeune-Henaut I (2013) Genetic variability and QTL mapping of freezing tolerance and related traits in Medicago truncatula. Theor Appl Genet 126:2353–2366

    CAS  PubMed  Google Scholar 

  • Basu A, Du M, Leyva MJ, Sanchez K, Betts NM, Wu M, Aston CE, Lyons TJ (2010) Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J Nutr 140:1582–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Fan S, Reighard GL, Scorza R, Abbott AG (2004) A deletion affecting several gene candidates is present in the evergrowing peach mutant. J Hered 95:436–444

    CAS  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507

    Google Scholar 

  • Boches P, Bassil NV, Rowland LJ (2006) Genetic diversity in the highbush blueberry Vaccinium corymbosum L. evaluated with microsatellite markers. J Am Soc Hortic Sci 131:674–686

    CAS  Google Scholar 

  • Bushakra JM, Stephens MJ, Atmadjaja AN, Lewers KS, Symonds VV, Udall JA, Chagne D, Buck EJ, Gardiner SE (2012) Construction of black (Rubus occidentalis) and red (R. idaeus) raspberry linkage maps and their comparison to the genomes of strawberry, apple, and peach. Theor Appl Genet 125:311–327

    CAS  PubMed  Google Scholar 

  • Cao K, Wang L, Zhu G, Fang W, Chen C, Luo J (2012) Genetic diversity, linkage disequilibrium, and association mapping analyses of peach (Prunus persica) landraces in China. Tree Genet Genomes 8:975–990

    Google Scholar 

  • Celton JM, Martinez S, Jammes MJ, Bechti A, Salvi S, Legave JM, Costes E (2011) Deciphering the genetic determinism of bud phenology in apple progenies: a new insight into chilling and heat requirement effects on flowering dates and positional candidate genes. N Phytol 192:378–392

    Google Scholar 

  • Chagne D, Gasic K, Crowhurst RN, Han Y, Bassett HC, Bowatte DR, Lawrence TJ, Rikkerink EHA, Gardiner SE, Korban SS (2008) Development of a set of SNP markers present in expressed genes of the apple. Genomics 92:353–358

    CAS  PubMed  Google Scholar 

  • Chakravarti A, Lasher LK, Reefer JE (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho E, Seddon JM, Rosner B, Willett WC, Hankinson SE (2004) Prospective study of intake of fruits, vegetables, vitamins and carotenoids and risk of age-related maculopathy. Arch Ophthalmol 122:883–892

    PubMed  Google Scholar 

  • De Vicente MC, Tanksley S (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    Google Scholar 

  • Dhanaraj AL, Slovin JP, Rowland LJ (2004) Analysis of gene expression associated with cold acclimation in blueberry floral buds using expressed sequence tags. Plant Sci 166:863–872

    CAS  Google Scholar 

  • Dhanaraj AL, Alkharouf NW, Beard HS, Chouikha IB, Matthews BF, Wei H, Arora R, Rowland LJ (2007) Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions. Planta 225:735–751

    CAS  PubMed  Google Scholar 

  • Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, Clair JBS, Neale DB (2009a) Association genetics of coastal Douglas fir (Pseudotsuga menziesu var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics 182:1289–1302

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eckert AJ, Wegrzyn JL, Pande B, Jermstad KD, Lee JM, Liechty JD, Tearse BR, Krutovsky KV, Neale DB (2009b) Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in coastal Douglas fir (Pseudotsuga menziesu var. menziesii). Genetics 183:289–298

    PubMed Central  PubMed  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). N Phytol 185:917–930

    Google Scholar 

  • Fear CD, Lauer FI, Luby JJ, Stucker RL, Stushnoff C (1985) Genetic components of variance for winter injury, fall growth cessation, and off-season flowering in blueberry progenies. J Am Soc Hortic Sci 110:262–266

    Google Scholar 

  • Fisk SP, Cuesta-Marcos A, Cistue L, Russell J, Smith KP, Baenziger S, Bedo Z, Corey A, Filichkin T, Karsai I, Waugh R, Hayes PM (2013) FR-H3: a new QTL to assist in the development of fall-sown barley with superior low temperature tolerance. Theor Appl Genet 126:335–347

    PubMed  Google Scholar 

  • Flinn CL, Ashworth EN (1994) Blueberry flower hardiness is not estimated by differential thermal analysis. J Am Soc Hortic Sci 119:295–298

    Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Toth B, Hayes PM, Skinner JS, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) × ‘Tremois’ (spring) barley map. Theor Appl Genet 108:670–680

    CAS  PubMed  Google Scholar 

  • Francia E, Barabaschi D, Tondelli A, Laido G, Rizza F, Stanca AM, Busconi M, Fogher C, Stockinger EJ, Pecchioni N (2007) Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet 115:1083–1091

    CAS  PubMed  Google Scholar 

  • Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW (1995) RFLP mapping of vernalization (Vrn1) and frost resistance (Fr1) on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179

    CAS  PubMed  Google Scholar 

  • Galletta GJ, Ballington JR (1996) Blueberries, cranberries and lingonberries. In: Janick J, Moore JN (eds) Fruit breeding. Vine and small fruit crops, vol II. Wiley, New York, pp 1–107

    Google Scholar 

  • Georgi L, Johnson-Cicalese J, Honig J, Das SP, Rajah VD, Bhattacharya D, Bassil N, Rowland LJ, Polashock J, Vorsa N (2013) The first genetic map of the American cranberry: exploration of synteny conservation and quantitative trait loci. Theor Appl Genet 126:673–692

    CAS  PubMed  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112

    Google Scholar 

  • Holliday JA, Ritland K, Aitken SN (2010) Widespread, ecologically relevant genetic markers developed from association mapping of climate-related traits in Sitka spruce (Picea sitchensis). N Phytol 188:501–514

    Google Scholar 

  • Howe GT, Saruul P, Davis J, Chen THH (2000) Quantitative genetics of bud phenology, frost damage, and winter survival in an F2 family of hybrid poplars. Theor Appl Genet 101:632–642

    Google Scholar 

  • Howe GT, Aitken SN, Neale DB, Jermstad KD, Wheeler NC, Chen THH (2003) From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Can J Bot 81:1247–1266

    CAS  Google Scholar 

  • Jaakola L, Maatta K, Pirttila AM, Torronen R, Karenlampi S, Hohtola A (2002) Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Phys 130:729–739

    CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    CAS  PubMed  Google Scholar 

  • Jermstad KD, Bassoni DL, Wheeler NC, Anekonda TS, Aitken SN, Adams WT, Neale DB (2001) Mapping of quantitative loci controlling adaptive traits in coastal Douglas-fir. II. Spring and fall cold-hardiness. Theor Appl Genet 102:1152–1158

    CAS  Google Scholar 

  • Jermstad KD, Bassoni DL, Jech KS, Ritchie GA, Wheeler NC, Neale DB (2003) Mapping of quantitative loci controlling adaptive traits in coastal Douglas Fir. III. Quantitative trait loci-by-environment interactions. Genetics 165:1489–1506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jimenez S, Li Z, Reighard GL, Bielenberg DG (2010) Identification of genes associated with growth cessation and bud dormancy entrance using a dormancy-incapable tree mutant. BMC Plant Biol 10:25

    PubMed Central  PubMed  Google Scholar 

  • Kalt W, Joseph JA, Shukitt-Hale B (2007) Blueberries and human health. A review of the current research. J Am Pomol Soc 61:151–160

    Google Scholar 

  • Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194

    Google Scholar 

  • Knox AK, Dhillon T, Cheng H, Tondelli A, Pecchioni N, Stockinger EJ (2010) CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet 121:21–35

    PubMed  Google Scholar 

  • Krebs SL, Hancock JF (1988) The consequences of inbreeding on fertility in Vaccinium corymbosum L. J Am Soc Hortic Sci 113:914–918

    Google Scholar 

  • Leida C, Romeu JF, Garcia-Brunton J, Rios G, Badenes ML (2012) Gene expression analysis of chilling requirements for flower bud break in peach. Plant Breed 131:329–334

    CAS  Google Scholar 

  • Lewers KS, Crane EH, Bronson CR, Schupp JM, Keim P, Shoemaker RC (1999) Detection of linked QTL for soybean brown stem rot resistance in ‘BSR 101’ as expressed in a growth chamber environment. Mol Breed 5:33–42

    Google Scholar 

  • Li Z, Reighard GL, Abbott AG, Bielenberg DG (2009) Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60:3521–3530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manly BFJ (1997) Randomization, bootstrap and Monte Carlo methods in biology, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Montgomery J, Wittwer CT, Palais R, Zhou L (2007) Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat Protoc 2:59–66

    CAS  PubMed  Google Scholar 

  • Naik D, Dhanaraj AL, Arora R, Rowland LJ (2007) Identification of genes associated with cold acclimation in blueberry (Vaccinium corymbosum L.) using a subtractive hybridization approach. Plant Sci 173:213–222

    CAS  Google Scholar 

  • Polashock JJ, Arora R, Peng Y, Naik D, Rowland LJ (2010) Functional identification of a C-repeat binding factor transcriptional activator from blueberry associated with cold acclimation and freezing tolerance. J Am Soc Hortic Sci 135:40–48

    Google Scholar 

  • Prior RL, Cao GH, Martin A, Sofic E, McEwen J, O’Brien C, Lischner N, Ehlenfeldt M, Kalt W, Krewer G, Mainland CM (1998) Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J Agric Food Chem 46:2686–2693

    CAS  Google Scholar 

  • Qu L, Hancock JF (1997) Randomly amplified polymorphic DNA- (RAPD-) based genetic linkage map of blueberry derived from an interspecific cross between diploid Vaccinium darrowii and tetraploid V. corymbosum. J Am Soc Hortic Sci 122:69–73

    CAS  Google Scholar 

  • Quero-Garcia J, Le Dantec L, Fodor A, Reignier A, Capdevilla G, Joly J, Tauzin Y, Fouilhaux L, Dirlewanger E (2010) QTL detection for fruit quality and phenological characters in sweet cherry. In: 5th international rosaceae genomics conference, Stellenbosch, South Africa

  • Reed GH, Wittwer CT (2004) Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem 50:1748–1754

    CAS  PubMed  Google Scholar 

  • Rowland LJ, Levi A (1994) RAPD-based genetic linkage map of blueberry derived from a cross between diploid species (Vaccinium darrowi × V. elliottii). Theor Appl Genet 87:863–868

    CAS  PubMed  Google Scholar 

  • Rowland LJ, Lehman JS, Levi A, Ogden EL, Panta GR (1998) Genetic control of chilling requirement in blueberry. In: Cline WO, Ballington JR (eds) Proceedings of the 8th North American Blueberry Research and extension worker’s conference, North Carolina State University, Raleigh, NC, USA, pp 258–267

  • Rowland LJ, Ogden EL, Arora R, Lim C-C, Lehman JS, Levi A, Panta GR (1999) Use of blueberry to study genetic control of chilling requirement and cold hardiness in woody perennials. HortScience 34:1185–1191

    Google Scholar 

  • Rowland LJ, Mehra S, Dhanaraj A, Ogden EL, Arora R (2003a) Identification of molecular markers associated with cold tolerance in blueberry. Acta Hortic 625:59–69

    CAS  Google Scholar 

  • Rowland LJ, Mehra S, Dhanaraj AL, Ogden EL, Slovin JP, Ehlenfeldt MK (2003b) Development of EST-PCR markers for DNA fingerprinting and genetic relationship studies in blueberry (Vaccinium, section Cyanococcus). J Am Soc Hortic Sci 128:682–690

    CAS  Google Scholar 

  • Rowland LJ, Ogden EL, Ehlenfeldt MK, Vinyard B (2005) Cold hardiness, deacclimation kinetics, and bud development among 12 diverse blueberry genotypes under field conditions. J Am Soc Hortic Sci 130:508–514

    Google Scholar 

  • Rowland LJ, Hancock JF, Bassil NV (2011) Blueberry. In: Folta K, Kole C (eds) Genetics, genomics and breeding of berries. Science, Enfield, pp 1–40

    Google Scholar 

  • Rowland LJ, Alkharouf N, Darwish O, Ogden EL, Polashock JJ, Bassil NV, Main D (2012) Generation and analysis of blueberry transcriptome sequences from leaves, developing fruit, and flower buds from cold acclimation through deacclimation. BMC Plant Biol 12:46. doi:10.1186/1471-2229-12-46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez-Perez R, Dicenta F, Martinez-Gomez P (2012) Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genet Genomes 8:379–389

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    CAS  PubMed  Google Scholar 

  • Spiers JM (1978) Effect of stage of bud development on cold injury in rabbiteye blueberry. J Am Soc Hortic Sci 103:452–455

    Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tayeh N, Bahrman N, Devaux R, Bluteau A, Prosperi J-M, Delbreil B, Lejeune-Henaut I (2013) A high-density genetic map of the Medicago truncatula major freezing tolerance QTL on chromosome 6 reveals colinearity with a QTL related to freezing damage on Pisum sativum linkage group VI. Mol Breed 32:279–289

    CAS  Google Scholar 

  • Tsarouhas V, Gullberg U, Lagercrantz U (2004) Mapping of quantitative trait loci (QTLs) affecting autumn freezing resistance and phenology in Salix. Theor Appl Genet 108:1335–1342

    CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2004) MapQTL® 5: software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B.V., Wageningen

    Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4: software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., Wageningen

    Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    CAS  PubMed  Google Scholar 

  • Wang Y, Georgi LL, Reighard GL, Scorza R, Abbott AG (2002) Genetic mapping of the evergrowing gene in peach [Prunus persica (L.) Batsch]. J Hered 93:352–358

    CAS  PubMed  Google Scholar 

  • Weber CA, Moore G, Deng Z, Gmitter FG Jr (2003) Mapping freeze tolerance quantitative trait loci in a Citrus grandis × Poncirus trifoliata F1 pseudo-testcross using molecular markers. J Am Soc Hortic Sci 128:508–514

    CAS  Google Scholar 

  • Wheeler NC, Jermstad KD, Krutovsky K, Aitken SN, Howe GT, Krakowski J, Neale DB (2005) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. IV. Cold-hardiness QTL verification and candidate gene mapping. Mol Breed 15:145–156

    CAS  Google Scholar 

  • Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge all the high school and college students who participated in this project as part of an internship or other training opportunity. We specifically would like to acknowledge the students from the University of Maryland (Brianna Driscoll, Dana Robinson, and Jenny Lindvall), who worked in Dr. Rowland’s lab on the mapping project, and the students from Davidson College (Mark Angel, Erich Baker, Spencer Chadinha, Stewart Dalton, Aaron Deal, Catherine Doyle, Tim Keating, David Lloyd, Austin Mudd, Mike Nuttle, Shamita Punjabi, and Daniel Tuerff), who worked in Dr. Campbell’s class to design SSRs near genes of interest. We would also like to thank Barbara Gilmore, April Nyberg, Elisabeth Alperin, and Jeremy Jones, who were involved in screening the mapping parents for SSR polymorphism. This project was partially funded by USDA-ARS Project 1245-21000-185-00D and USDA-CSREES Specialty Crop Research Initiative Grant 2008-51180-04861 entitled ‘Generating Genomic Tools for Blueberry Improvement.’ Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture or any of the other agencies involved in this research.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa J. Rowland.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 40 kb)

Supplementary material 2 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowland, L.J., Ogden, E.L., Bassil, N. et al. Construction of a genetic linkage map of an interspecific diploid blueberry population and identification of QTL for chilling requirement and cold hardiness. Mol Breeding 34, 2033–2048 (2014). https://doi.org/10.1007/s11032-014-0161-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0161-9

Keywords

Navigation