Skip to main content

Advertisement

Log in

A Self-Aware Epilepsy Monitoring System for Real-Time Epileptic Seizure Detection

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Epilepsy is one of the most prevalent paroxystic neurological disorders that can dramatically degrade the quality of life and may even lead to death. Therefore, real-time epilepsy monitoring and seizure detection has become important over the past decades. In this context, wearable technologies offer a promising solution to pervasive epilepsy monitoring by removing the constraints with respect to time and location. In this paper, we propose a self-aware wearable system for real-time detection of epileptic seizures on a long-term basis. First, we propose a multi-parametric machine learning technique to detect seizures by analyzing both cardiac and respiratory responses to seizures, which are obtained using only the ECG signal. Second, in order to enable long-time epilepsy detection, we introduce the notion of self-awareness in our real-time wearable system. We evaluate the performance of our proposed solution based on an epilepsy database of more than 211 hours of recording, provided by the Lausanne University Hospital (CHUV), on the INYU wearable sensor. Our proposed system achieves a sensitivity of 88.66% and a specificity of 85.65% before applying self-awareness. Moreover, by controlling the energy-quality trade-offs using our self-aware energy-management technique, we can tune the battery lifetime of the wearable system to last between 67.55 and 136.91 days while, still outperforming the state-of-the-art techniques for wearable seizure detection, by achieving from 85.54% to 79.33% geometric mean of specificity and sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Organization WH (2006) Neurological disorders: public health challenges. World Health Organization, Geneva

    Google Scholar 

  2. Organization WH (2016) Epilepsy. https://www.who.int/mental_health/neurology/epilepsy/en/

  3. Thurman DJ, Hesdorffer DC, French JA (2014) Sudden unexpected death in epilepsy: assessing the public health burden. Epilepsia 55(10):1479

    Article  Google Scholar 

  4. van Andel J, Thijs RD, de Weerd A, Arends J, Leijten F (2016) Non-EEG based ambulatory seizure detection designed for home use: what is available and how will it influence epilepsy care?. Epilepsy Behav 57:82

    Article  Google Scholar 

  5. Ryvlin P, Ciumas C, Wisniewski I, Beniczky S (2018) Wearable devices for sudden unexpected death in epilepsy prevention. Epilepsia 59:61

    Article  Google Scholar 

  6. Van de Vel A, Cuppens K, Bonroy B, Milosevic M, Jansen K, Van Huffel S, Vanrumste B, Lagae L, Ceulemans B (2013) Non-EEG seizure-detection systems and potential SUDEP prevention: state of the art. Seizure-European Journal of Epilepsy 22(5):345

  7. Kounev S, Kephart JO, Milenkoski A, Zhu X (2017) Self-aware computing systems, 1st edn. Springer Publishing Company, Incorporated, Berlin

    Book  Google Scholar 

  8. Lewis PR, Chandra A, Parsons S, Robinson E, Glette K, Bahsoon R, Torresen J, Yao X (2011) A survey of self-awareness and its application in computing systems. In: 2011 fifth IEEE conference on self-adaptive and self-organizing systems workshops (SASOW), IEEE, pp 102–107

  9. Hoffmann H, Maggio M, Santambrogio MD, Leva A, Agarwal A (2010) Seec: A framework for self-aware computing

  10. Maggio M, Abdelzaher T, Esterle L (2017) Self-adaptation for individual self-aware computing systems. Springer International Publishing, Berlin

    Book  Google Scholar 

  11. Jantsch A, Dutt N, Rahmani AM (2017) Self-Awareness in Systems on Chip-A Survey. IEEE Des Test 34(6):8

    Article  Google Scholar 

  12. Aminifar A (2016) Analysis, design and optimization of embedded control systems. Linkoping University Electronic Press

  13. Van de Vel A, Cuppens K, Bonroy B, Milosevic M, Jansen K, Van Huffel S, Vanrumste B, Cras P, Lagae L, Ceulemans B (2016) Non-EEG seizure detection systems and potential SUDEP prevention: State of the art: Review and update. Seizure 41:141

  14. Morrell MJ (2011) Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77(13):1295

    Article  Google Scholar 

  15. Beniczky S, Conradsen I, Henning O, Fabricius M, Wolf P (2018) Automated real-time detection of tonic-clonic seizures using a wearable EMG device. Neurology 90(5):e428

    Article  Google Scholar 

  16. Szabó CÁ, Morgan LC, Karkar KM, Leary LD, Lie OV, Girouard M, Cavazos JE (2015) Electromyography-based seizure detector: preliminary results comparing a generalized tonic–clonic seizure detection algorithm to video-EEG recordings. Epilepsia 56(9):1432

    Article  Google Scholar 

  17. Devinsky O, Perrine K, Theodore WH (1994) Interictal autonomic nervous system function in patients with epilepsy. Epilepsia 35(1):199

    Article  Google Scholar 

  18. Wannamaker BB (1985) Autonomic nervous system and epilepsy. Epilepsia 26(s1):31–39

    Article  Google Scholar 

  19. Jansen K, Lagae L (2010) Cardiac changes in epilepsy. Seizure 19(8):455

    Article  Google Scholar 

  20. Sevcencu C, Struijk JJ (2010) Autonomic alterations and cardiac changes in epilepsy. Epilepsia 51(5):725

    Article  Google Scholar 

  21. Zijlmans M, Flanagan D, Gotman J (2002) Heart rate changes and ECG abnormalities during epileptic seizures: prevalence and definition of an objective clinical sign. Epilepsia 43(8):847

    Article  Google Scholar 

  22. Nilsen KB, Haram M, Tangedal S, Sand T, Brodtkorb E (2010) Is elevated pre-ictal heart rate associated with secondary generalization in partial epilepsy?. Seizure 19(5):291

    Article  Google Scholar 

  23. Boon P, Vonck K, van Rijckevorsel K, El Tahry R, Elger CE, Mullatti N, Schulze-Bonhage A, Wagner L, Diehl B, Hamer H et al (2015) A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation. Seizure 32:52

    Article  Google Scholar 

  24. Kothare SV, Singh K (2014) Cardiorespiratory abnormalities during epileptic seizures. Sleep Med 15 (12):1433

    Article  Google Scholar 

  25. Devinsky O (2004) Effects of seizures on autonomic and cardiovascular function. Epilepsy Currents 4(2):43

    Article  Google Scholar 

  26. Cogan D, Birjandtalab J, Nourani M, Harvey J, Nagaraddi V (2017) Multi-biosignal analysis for epileptic seizure monitoring. Int J Neural Syst 27(01):1650031

    Article  Google Scholar 

  27. O’Regan ME, Brown JK (2005) Abnormalities in cardiac and respiratory function observed during seizures in childhood. Dev Med Child Neurol 47(1):4

    Article  Google Scholar 

  28. Blum AS (2009) Respiratory physiology of seizures. J Clin Neurophysiol 26(5):309

    Article  Google Scholar 

  29. Seyal M, Bateman LM, Li CS (2013) Impact of periictal interventions on respiratory dysfunction, postictal EEG suppression, and postictal immobility. Epilepsia 54(2):377

    Article  Google Scholar 

  30. Bateman LM, Spitz M, Seyal M (2010) Ictal hypoventilation contributes to cardiac arrhythmia and SUDEP: Report on two deaths in video-EEG–monitored patients. Epilepsia 51(5):916

    Article  Google Scholar 

  31. Bateman LM, Li CS, Lin TC, Seyal M (2010) Serotonin reuptake inhibitors are associated with reduced severity of ictal hypoxemia in medically refractory partial epilepsy. Epilepsia 51(10):2211

    Article  Google Scholar 

  32. Poh MZ, Loddenkemper T, Swenson NC, Goyal S, Madsen JR, Picard RW (2010) Continuous monitoring of electrodermal activity during epileptic seizures using a wearable sensor. In: Engineering in medicine and biology society (EMBC), 2010 annual international conference of the IEEE, IEEE, pp 4415– 4418

  33. Eggleston KS, Olin BD, Fisher RS (2014) Ictal tachycardia: the head–heart connection. Seizure 23 (7):496

    Article  Google Scholar 

  34. Jansen K, Varon C, Van Huffel S, Lagae L (2013) Peri-ictal ECG changes in childhood epilepsy: implications for detection systems. Epilepsy Behav 29(1):72

    Article  Google Scholar 

  35. Schiecke K, Wacker M, Piper D, Benninger F, Feucht M, Witte H (2014) Time-variant, frequency-selective, linear and nonlinear analysis of heart rate variability in children with temporal lobe epilepsy. IEEE Trans Biomed Eng 61(6):1798

    Article  Google Scholar 

  36. Forooghifar F, Aminifar A, Atienza D (2018) Self-aware wearable systems in epileptic seizure detection. In: Proceedings of euromicro conference on digital system design (DSD) 2018, IEEE

  37. Murali S, Rincon F, Atienza D (2015) A wearable device for physical and emotional health monitoring. In: Computing in cardiology conference (CinC), 2015, IEEE, pp 121–124

  38. LivaNova (2016) Vagus nerve stimulation (vns therapy). http://www.livanova.cyberonics.com

  39. AspireSR (2016) Vagus nerve stimulation (vns therapy). https://www.epilepsy.com/learn/treating-seizures-and-epilepsy/devices/vagus-nerve-stimulation-vns

  40. Hoppe C, Feldmann M, Blachut B, Surges R, Elger CE, Helmstaedter C (2015) Novel techniques for automated seizure registration: patients’ wants and needs. Epilepsy Behav 52:1

    Article  Google Scholar 

  41. Wang D, Ren D, Li K, Feng Y, Ma D, Yan X, Wang G (2018) Epileptic Seizure detection in long-term EEG recordings by using wavelet-based directed transfer function. IEEE Transactions on Biomedical Engineering

  42. Guo L, Rivero D, Pazos A (2010) Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. Biomed Signal Process Control 193(1):156

    Google Scholar 

  43. Raghu S, Sriraam N, Kumar GP, Hegde A (2018) A novel approach for real time recognition of epileptic seizures using minimum variance modified fuzzy entropy. IEEE Transactions on Biomedical Engineering

  44. Fu K, Qu J, Chai Y, Zou T (2015) Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals. Biomed Signal Process Control 18:179

    Article  Google Scholar 

  45. Song JL, Hu W, Zhang R (2016) Automated detection of epileptic EEGs using a novel fusion feature and extreme learning machine. Neurocomputing 175:383

    Article  Google Scholar 

  46. Hassan AR, Siuly S, Zhang Y (2016) Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating. Comput Methods Prog Biomed 137:247

    Article  Google Scholar 

  47. Ravan M, Sabesan S, O’Neill D (2017) On quantitative biomarkers of VNS therapy using EEG and ECG signals. IEEE Trans Biomed Eng 64(2):419

    Article  Google Scholar 

  48. Pascual D, Aminifar A, Atienza D (2019) A self-learning methodology for epileptic seizure detection with minimally supervised edge labeling. In: Design, Automation & test in europe conference & exhibition (DATE), 2019, IEEE

  49. Foundation E (2016) Sami. https://www.samialert.com

  50. Epi-Watcher (2017) Epi-watcher. http://www.vahlkamp.nl

  51. Narechania AP, Garic II, Sen-Gupta I, Macken MP, Gerard EE, Schuele SU (2013) Assessment of a quasi-piezoelectric mattress monitor as a detection system for generalized convulsions. Epilepsy Behav 28(2):172

    Article  Google Scholar 

  52. Monitor S (2016) Smartwatch. http://smart-monitor.com/

  53. Empatica (2016) Embrace alert system. https://www.empatica.com/embrace-watch-epilepsy-monitor

  54. Larsen SN, Conradsen I, Beniczky S, Sorensen HB (2014) Detection of tonic epileptic seizures based on surface electromyography. In: Engineering in medicine and biology society (EMBC), 2014 36th annual international conference of the IEEE, IEEE, pp 942–945

  55. Szabo CA, Morgan LC, Karkar KM, Leary LD, Lie OV, Girouard M, Cavazos JE (2015) Electromyography-based seizure detector: Preliminary results comparing a generalized tonic–clonic seizure detection algorithm to video-EEG recordings. Epilepsia 56(9):1432

    Article  Google Scholar 

  56. Van Elmpt WJ, Nijsen TM, Griep PA, Arends J (2006) A model of heart rate changes to detect seizures in severe epilepsy. Seizure 15(6):366

    Article  Google Scholar 

  57. Doyle O, Temko A, Marnane W, Lightbody G, Boylan G (2010) Heart rate based automatic seizure detection in the newborn. Med Eng Phys 32(8):829

    Article  Google Scholar 

  58. Vandecasteele K, De Cooman T, Gu Y, Cleeren E, Claes K, Paesschen WV, Huffel SV, Hunyadi B (2017) Automated epileptic seizure detection based on wearable ecg and ppg in a hospital environment. Sensors 17(10):2338

    Article  Google Scholar 

  59. Masse F, Bussel MV, Serteyn A, Arends J, Penders J (2013) Miniaturized wireless ECG monitor for real-time detection of epileptic seizures. ACM Trans Embed Comput Syst (TECS) 12(4):102

    Google Scholar 

  60. Ungureanu C, Bui V, Roosmalen W, Aarts RM, Arends JB, Verhoeven R, Lukkien JJ (2014) A wearable monitoring system for nocturnal epileptic seizures. In: 2014 8th international symposium on medical information and communication technology (ISMICT), IEEE, pp 1–5

  61. Varon C, Jansen K, Lagae L, Van Huffel S (2013) Detection of epileptic seizures by means of morphological changes in the ECG. In: Computing in cardiology conference (CinC), 2013 IEEE, pp 863–866

  62. Osorio I (2014) Automated seizure detection using EKG. Int sJ Neural Syst 24(02):1450001

    Article  Google Scholar 

  63. Jeppesen J, Beniczky S, Johansen P, Sidenius P, Fuglsang-Frederiksen A (2014) Using lorenz plot and cardiac sympathetic index of heart rate variability for detecting seizures for patients with epilepsy. In: The 36th IEEE annual international conference of engineering in medicine and biology society (EMBC), IEEE, pp 4563–4566

  64. Jeppesen J, Beniczky S, Johansen P, Sidenius P, Fuglsang-frederiksen A (2015) Detection of epileptic seizures with a modified heart rate variability algorithm based on Lorenz plot. Seizure 24:1

    Article  Google Scholar 

  65. Pavei J, Heinzen RG, Novakova B, Walz R, Serra AJ, Reuber M, Ponnusamy A, Marques JL (2017) Early seizure detection based on cardiac autonomic regulation dynamics. Front Physiol 8:765

    Article  Google Scholar 

  66. Dutt N, Jantsch A, Sarma S (2016) Toward smart embedded systems: a self-aware system-on-chip (soc) perspective. ACM Trans Embed Comput Syst (TECS) 15(2):22

    Google Scholar 

  67. Preden JS, Tammemae K, Jantsch A, Leier M, Riid A, Calis E (2015) The benefits of self-awareness and attention in fog and mist computing. Computer 48(7):37

    Article  Google Scholar 

  68. Chen T, Faniyi F, Bahsoon R, Lewis PR, Yao X, Minku LL, Esterle L (2014) The handbook of engineering self-aware and self-expressive systems. arXiv:1409.1793

  69. Faniyi F, Lewis PR, Bahsoon R, Yao X (2014) Architecting self-aware software systems. In: In: 2014 IEEE/IFIP conference on software architecture (WICSA), IEEE, pp 91–94

  70. Aminifar A, Tabuada P, Eles P, Peng Z (2016) Self-triggered controllers and hard real-time guarantees. In: Proceedings of the 2016 conference on design, automation & test in Europe, EDA Consortium, pp 636–641

  71. Aminifar A (2016) Self-triggered controllers, resource sharing, and hard guarantees. In: 2016 second international conference on event-based control, communication, and signal processing (EBCCSP), IEEE, pp 1–7

  72. Anzanpour A, Azimi I, Gotzinger M, Rahmani AM, TaheriNejad N, Liljeberg P, Jantsch A, Dutt N (2017) Self-awareness in remote health monitoring systems using wearable electronics. In: Proceedings of the conference on design, automation & test in Europe (European design and automation association), pp 1056– 1061

  73. TaheriNejad N, Jantsch A, Pollreisz D (2016) Comprehensive observation and its role in self-awareness; an emotion recognition system example. Self 11:1

    Google Scholar 

  74. Breiman L (2001) Random forests. Mach Learn 45(1):5

    Article  MATH  Google Scholar 

  75. Pan J, Tompkins WJ (1985) A Real-time QRS detection algorithm. IEEE Trans Biomed Eng BME-32 (3):230. https://doi.org/10.1109/TBME.1985.325532

    Article  Google Scholar 

  76. Thompson R (1985) A note on restricted maximum likelihood estimation with an alternative outlier model. Journal of the Royal Statistical Society. Series B (Methodological) pp 53–55

  77. Ivanov PC, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, Stanley HE (1999) Multifractality in human heartbeat dynamics. Nature 399(6735):461

    Article  Google Scholar 

  78. de Chazal P, Heneghan C, Sheridan E, Reilly R, Nolan P, O’Malley M (2003) Automated processing of the single-lead electrocardiogram for the detection of obstructive sleep apnoea. IEEE Trans Biomed Eng 50(6):686. https://doi.org/10.1109/TBME.2003.812203

    Article  Google Scholar 

  79. Ocak H (2009) Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 36(2):2027

    Article  Google Scholar 

  80. Chen X, Solomon IC, Chon KH (2006) Comparison of the use of approximate entropy and sample entropy: applications to neural respiratory signal. In: 2005. IEEE-EMBS 2005. 27th annual international conference of the engineering in medicine and biology society, IEEE, pp 4212–4215

  81. Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88(17):174102

    Article  Google Scholar 

  82. Acharya UR, Fujita H, Sudarshan VK, Bhat S, Koh JE (2015) Application of entropies for automated diagnosis of epilepsy using EEG signals: A review. Knowl-Based Syst 88:85

    Article  Google Scholar 

  83. Scargle JD (1982) Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 263:835–853

    Article  Google Scholar 

  84. Lomb NR (1976) Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci 39:447

    Article  Google Scholar 

  85. Fleming PJ, Wallace JJ (1986) How not to lie with statistics: the correct way to summarize benchmark results. Commun ACM 29(3):218

    Article  Google Scholar 

  86. Ultra-low-power ARM Cortex-M3 MCU with 384 Kbytes Flash, 32 MHz CPU, USB, STM32L151RD. 3xOp-amp - STMicroelectronics

  87. Ambu BlueSensor VLC, ECG electrode for sensitive skin

  88. Instruments T (2018) Ads7142. http://www.ti.com/product/ADS7142/description

Download references

Acknowledgements

This work has been partially supported by the MyPreHealth research project (Hasler Foundation project No. 16073), the WiTNESS project (Promobilia Foundation project No. 18079), and the Human Brain Project (HBP) SGA2 (GA No. 785907). The authors also would like to thank M. Nassralla for an initial implementation of a subset of the seizure detection features for epileptic signals, which was revised and extended to define the final set of used features.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farnaz Forooghifar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forooghifar, F., Aminifar, A., Cammoun, L. et al. A Self-Aware Epilepsy Monitoring System for Real-Time Epileptic Seizure Detection. Mobile Netw Appl 27, 677–690 (2022). https://doi.org/10.1007/s11036-019-01322-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-019-01322-7

Keywords

Navigation