Skip to main content
Log in

Asymptotic Behavior of Density in the Boundary-Driven Exclusion Process on the Sierpinski Gasket

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We derive the macroscopic laws that govern the evolution of the density of particles in the exclusion process on the Sierpinski gasket in the presence of a variable speed boundary. We obtain, at the hydrodynamics level, the heat equation evolving on the Sierpinski gasket with either Dirichlet or Neumann boundary conditions, depending on whether the reservoirs are fast or slow. For a particular strength of the boundary dynamics we obtain linear Robin boundary conditions. As for the fluctuations, we prove that, when starting from the stationary measure, namely the product Bernoulli measure in the equilibrium setting, they are governed by Ornstein-Uhlenbeck processes with the respective boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldasso, R., Menezes, O., Neumann, A., Souza, R.R.: Exclusion process with slow boundary. J. Stat. Phys. 167(5), 1112–1142 (2017). https://doi.org/10.1007/s10955-017-1763-5

    Article  ADS  MathSciNet  Google Scholar 

  2. Barlow, M.T.: Diffusions on fractals. In: Lectures on Probability Theory and Statistics (Saint-Flour, 1995). Lect. Notes in Math., vol. 1690, pp. 1–121. Springer, Berlin (1998)

  3. Barlow, M.T., Perkins, E.A.: Brownian motion on the Sierpiński gasket. Probab. Theory Related Fields 79(4), 543–623 (1988)

    Article  MathSciNet  Google Scholar 

  4. Bernardin, C., Gonçalves, P., Jiménez-Oviedo, B.: A microscopic model for a one parameter class of fractional Laplacians with Dirichlet boundary conditions. arXiv:1803.00792 (2018)

  5. Bernardin, C., Gonçalves, P., Jiménez-Oviedo, B.: Slow to fast infinitely extended reservoirs for the symmetric exclusion process with long jumps. Markov Process. Related Fields 25(2), 217–274 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Bernardin, C., Gonçalves, P., Jara, M., Scotta, S.: Equilibrium fluctuations for diffusive symmetric exclusion with long jumps and infinitely extended reservoirs. arXiv:2002.12841 (2020)

  7. Bernardin, C., Gonçalves, P., Scotta, S.: Hydrodynamic limit for a boundary driven super-diffusive symmetric exclusion. arXiv:2007.01621 (2020)

  8. Chang, C.C., Yau, H.-T.: Fluctuations of one-dimensional Ginzburg-Landau models in nonequilibrium. Comm. Math. Phys. 145(2), 209–234 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  9. Chen, J. P.: The moving particle lemma for the exclusion process on a weighted graph. Electron. Commun. Probab. 22(47), 1–13 (2017)

    MathSciNet  Google Scholar 

  10. Chen, J.P., Franceschini, C., Gonçalves, P., Menezes, O.: Nonequilibrium and stationary fluctuations in the boundary-driven exclusion process on the Sierpinski gasket. Preprint (2021+)

  11. Dittrich, P., Gärtner, J.: A central limit theorem for the weakly asymmetric simple exclusion process. Math. Nachr. 151, 75–93 (1991). https://doi.org/10.1002/mana.19911510107

    Article  MathSciNet  Google Scholar 

  12. Franco, T., Gonçalves, P., Neumann, A.: Phase transition in equilibrium fluctuations of symmetric slowed exclusion. Stochastic Process. Appl. 123(12), 4156–4185 (2013). https://doi.org/10.1016/j.spa.2013.06.016

    Article  MathSciNet  Google Scholar 

  13. Franco, T., Gonçalves, P., Neumann, A.: Equilibrium fluctuations for the slow boundary exclusion process. In: From Particle Systems to Partial Differential Equations. Springer Proc. Math. Stat., vol. 209, pp. 177–197. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66839-0_9

  14. Fukushima, M., Shima, T.: On a spectral analysis for the Sierpiński gasket. Potential Anal. 1(1), 1–35 (1992). https://doi.org/10.1007/BF00249784

    Article  MathSciNet  Google Scholar 

  15. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes, Second revised and extended edition. de Gruyter Studies in Mathematics, vol. 19. Walter de Gruyter & Co., Berlin (2011)

    MATH  Google Scholar 

  16. Gonçalves, P.: Hydrodynamics for symmetric exclusion in contact with reservoirs. In: Stochastic Dynamics Out of Equilibrium. Springer Proc. Math. Stat., vol. 282, pp. 137–205. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15096-9_4

  17. Gonçalves, P., Jara, M., Menezes, O., Neumann, A.: Non-equilibrium and stationary fluctuations for the SSEP with slow boundary. Stochastic Process. Appl. 130(7), 4326–4357 (2020). https://doi.org/10.1016/j.spa.2019.12.006

    Article  MathSciNet  Google Scholar 

  18. Gonçalves, P., Perkowski, N., Simon, M.: Derivation of the stochastic Burgers equation with Dirichlet boundary conditions from the WASEP. Ann. H. Lebesgue 3, 87–167 (2020). https://doi.org/10.5802/ahl.28

    Article  MathSciNet  Google Scholar 

  19. Gravner, J., Quastel, J.: Internal DLA and the Stefan problem. Ann. Probab. 28(4), 1528–1562 (2000). https://doi.org/10.1214/aop/1019160497

    Article  MathSciNet  Google Scholar 

  20. Guo, M.Z., Papanicolaou, G.C., Varadhan, S. R.S.: Nonlinear diffusion limit for a system with nearest neighbor interactions. Comm. Math. Phys. 118(1), 31–59 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  21. Jara, M.: Hydrodynamic limit for a zero-range process in the Sierpinski gasket. Comm. Math. Phys. 288(2), 773–797 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. Jara, M.: Análise em fractais. Publicações Matemáticas do IMPA. [IMPA Mathematical Publications]. Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro. 29o Colóquio Brasileiro de Matemática. [29th Brazilian Mathematics Colloquium] (2013)

  23. Kigami, J.: Harmonic analysis for resistance forms. J. Funct. Anal. 204(2), 399–444 (2003)

    Article  MathSciNet  Google Scholar 

  24. Kigami, J.: Analysis on fractals. Cambridge Tracts in Mathematics, vol. 143. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  25. Kigami, J.: A harmonic calculus on the Sierpiński spaces. Japan J. Appl. Math. 6(2), 259–290 (1989). https://doi.org/10.1007/BF03167882

    Article  MathSciNet  Google Scholar 

  26. Kigami, J.: Harmonic calculus on p.c.f. self-similar sets. Trans. Amer. Math. Soc. 335(2), 721–755 (1993). https://doi.org/10.2307/2154402

    MathSciNet  MATH  Google Scholar 

  27. Kigami, J., Lapidus, M.L.: Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals. Comm. Math. Phys. 158(1), 93–125 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  28. Kipnis, C., Landim, C.: Scaling limits of interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 320. Springer, Berlin (1999)

    Google Scholar 

  29. Landim, C., Milanés, A., Olla, S.: Stationary and nonequilibrium fluctuations in boundary driven exclusion processes. Markov Process. Related Fields 14(2), 165–184 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Liggett, T.M.: Interacting particle systems. Classics in Mathematics. Springer, Berlin (2005). https://doi.org/10.1007/b138374, Reprint of the 1985 original

    Book  Google Scholar 

  31. Mitoma, I.: Tightness of probabilities on \(C([0,1];{\mathcal {S}}^{\prime })\) and \(D([0,1];{\mathcal {S}}^{\prime } )\). Ann. Probab. 11(4), 989–999 (1983)

    Article  MathSciNet  Google Scholar 

  32. Rogers, L.G., Strichartz, R.S., Teplyaev, A.: Smooth bumps, a Borel theorem and partitions of smooth functions on P.C.F. fractals. Trans. Amer. Math. Soc. 361(4), 1765–1790 (2009). MR2465816

    Article  MathSciNet  Google Scholar 

  33. Schaefer, H.H., Woff, M.P.: Topological vector spaces, Second, Graduate Texts in Mathematics, vol. 3. Springer, New York (1999). MR1741419

    Google Scholar 

  34. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970). https://doi.org/10.1016/0001-8708(70)90034-4

    Article  MathSciNet  Google Scholar 

  35. Spohn, H.: Large scale dynamics of interacting particles. Springer, Berlin (1991)

    Book  Google Scholar 

  36. Strichartz, R.S.: Differential equations on fractals. a tutorial. Princeton University Press, Princeton (2006)

    Book  Google Scholar 

  37. van Ginkel, B., Redig, F.: Equilibrium fluctuations for the Symmetric Exclusion Process on a compact Riemannian manifold. arXiv:2003.02111(2020)

  38. van Ginkel, B., Redig, F.: Hydrodynamic limit of the symmetric exclusion process on a compact Riemannian manifold. J. Stat. Phys. 178(1), 75–116 (2020). https://doi.org/10.1007/s10955-019-02420-2

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for useful comments that helped us improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe P. Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

JPC thanks the US National Science Foundation (DMS-1855604), the Simons Foundation (Collaboration Grant for Mathematicians #523544), and the Research Council of Colgate University for support. PG thanks FCT/Portugal for support through the project UID/MAT/04459/2013. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovative programme (grant agreement No 715734).

Appendix A: Dirichlet-to-Neumann map on SG

Appendix A: Dirichlet-to-Neumann map on SG

In this appendix we characterize the harmonic function which satisfies the Robin boundary condition

$$ \left\{\begin{array}{ll} {\Delta} h(x) =0 ,& x\in K\setminus V_{0},\\ \partial^{\perp} h(a) + \kappa(a) h(a) = \gamma(a), & a\in V_{0}, \end{array} \right. $$
(A.1)

where {κ(a) : aV0} and {γ(a) : aV0} are given coefficients.

Let \(h^{i}: K\to \mathbb {R}\), i ∈{0, 1, 2}, denote the harmonic function with Dirichlet boundary condition hi(aj) = δij, j ∈{0, 1, 2}. By the harmonic extension algorithm described in [36, Section 1.3], \(\{h^{i}\}_{i=0}^{2}\) is a basis for the space of harmonic functions on K, so we may express the solution h of (A.1) as a linear combination \(h= {\sum }_{i=0}^{2} \textbf {c}_{i} h^{i}\), where the coefficients {ci}i are determined by the boundary condition in (A.1):

$$ \sum\limits_{i=0}^{2} \textbf{c}_{i} (\partial^{\perp} h^{i})(a_{j}) + \kappa(a_{j}) \textbf{c}_{j} = \gamma(a_{j}), \quad j\in \{0,1,2\}. $$
(A.2)

We can then conclude that h is a harmonic function satisfying the Dirichlet boundary condition h(ai) = ci, i ∈{0, 1, 2}.

So it suffices to find {ci}i. The harmonic extension algorithm [36, Section 1.3] yields

$$ (\partial^{\perp} h^{i})(a_{j}) = \left\{\begin{array}{ll} 2, & \text{if } j=i,\\ -1, & \text{if } j \neq i. \end{array} \right. $$
(A.3)

Thus we arrive at the matrix problem

$$ \left[\begin{array}{lll} 2+\kappa_{0} & -1 & -1 \\ -1 & 2+\kappa_{1} & -1 \\ -1 & -1 & 2+\kappa_{2} \end{array}\right] \left[\begin{array}{ll} \textbf{c}_{0} \\ \textbf{c}_{1} \\ \textbf{c}_{2} \end{array}\right] = \left[\begin{array}{ll} \gamma_{0} \\ \gamma_{1} \\ \gamma_{2} \end{array}\right] . $$
(A.4)

where κj and γj are shorthands for κ(aj) and γ(aj). It can be checked that the left-hand side matrix is invertible iff its determinant

$$ \boldsymbol{\Delta}:=3(\kappa_{0}+\kappa_{1}+\kappa_{2}) + 2(\kappa_{0} \kappa_{1}+ \kappa_{1}\kappa_{2}+\kappa_{2}\kappa_{0}) + \kappa_{0}\kappa_{1}\kappa_{2} $$
(A.5)

is nonzero. Assuming invertibility, we find

$$ \left[\begin{array}{ll} \textbf{c}_{0} \\ \textbf{c}_{1} \\ \textbf{c}_{2} \end{array}\right] = \frac{1}{\boldsymbol{\Delta}} \left[\begin{array}{lll} 3+ 2(\kappa_{1}+\kappa_{2}) + \kappa_{1}\kappa_{2} & 3+\kappa_{2} & 3+\kappa_{1} \\ 3+\kappa_{2} & 3+ 2(\kappa_{2} +\kappa_{0}) + \kappa_{2} \kappa_{0} & 3+\kappa_{0}\\ 3+\kappa_{1} & 3+\kappa_{0} & 3+2(\kappa_{0}+\kappa_{1})+\kappa_{0}\kappa_{1} \end{array}\right] \left[\begin{array}{ll} \gamma_{0} \\ \gamma_{1} \\ \gamma_{2} \end{array}\right]. $$
(A.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J.P., Gonçalves, P. Asymptotic Behavior of Density in the Boundary-Driven Exclusion Process on the Sierpinski Gasket. Math Phys Anal Geom 24, 24 (2021). https://doi.org/10.1007/s11040-021-09392-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-021-09392-4

Keywords

Mathematics Subject Classification (2010)

Navigation