Skip to main content
Log in

Effects of Heat Treatment on the Microstructure and Properties of Graded-Density Powder Aluminum Alloys

  • Published:
Metal Science and Heat Treatment Aims and scope

Novel aluminum powder alloys with graded density are studied by differential scanning calorimetry, x-ray diffraction, fractographic, and x-ray phase analyses. The influence of solution treatment and aging on the microstructure and properties of the alloys is investigated. The variation of properties over the thickness of the specimens is determined. It is shown that the mechanical properties are the best after a 2-h solution treatment at 495°C and subsequent 8-h aging at 190°C with air cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. C. H. Thai, A. J. M. Ferreira, and H. Nguyen-Xuan, “Isogeometric analysis of size dependent isotropic and sandwich functionally graded microplates based on modified strain gradient elasticity theory,” Compos. Struct., 192, 274 – 288 (2018).

    Article  Google Scholar 

  2. M. Naebe and K. Shirvanimoghaddam, “Functionally graded materials: A review of fabrication and properties,” Appl. Mater. Today, 5, 223 – 245 (2016).

    Article  Google Scholar 

  3. C. Zhou, L. Li, J. Wang, J. Yi, and Y. Peng, “A novel approach for fabrication of functionally gradedW/Cu composites via microwave processing,” J. Alloys Compd., 743, 383 – 387 (2018).

    Article  CAS  Google Scholar 

  4. J. Reddy and J. Kim, “A nonlinear modified couple stress-based third-order theory of functionally graded plates,” Compos. Struct., 94, 1128 – 1143 (2012).

    Article  Google Scholar 

  5. S. A. Momeni and M. Asghari, “The second strain gradient functionally graded beam formulation,” Compos. Struct., 188, 15 – 24 (2018).

    Article  Google Scholar 

  6. X. Xiang, X. L. Wang, G. K. Zhang, T. Tang, and X. C. Lai, “Preparation technique and alloying effect of aluminide coatings as tritium permeation barriers: A review,” Int. J. Hydrogen Energ., 40, 3697 – 3707 (2015).

    Article  CAS  Google Scholar 

  7. L. J. Xue, H. Z. Mu, and J. J. Feng, “Thermal mechanical behavior of a functionally graded shape memory alloy cylinder subject to pressure and graded temperature loads,” J. Mater. Res., 33, 1806 – 1812 (2018).

    Article  CAS  Google Scholar 

  8. M. Shaik, A. K. Khanra, and B. P. Saha, “Processing of sintered and CVD coated SiC/CNFs thin composite tubes,” Mater. Chem. Phys., 220, 225 – 232 (2018).

    Article  CAS  Google Scholar 

  9. S. Y. He, Y. Zhang, G. Dai, and J. Q. Jiang, “Preparation of density-graded aluminum foam,” Mater. Sci. Eng. A, 618, 496 – 499 (2018).

    Article  Google Scholar 

  10. C. Liu, Y. Liu, Y. L. Yang, Y. Z., et al., “New method for preparing micron porous aluminum via powder metallurgy,” Mater. Sci. Tech-load., 34, 1295 – 1302 (2018).

  11. M. Ubeyli, E. Balci, B. Sarikan, et al., “The ballistic performance of SiC–AA7075 functionally graded composite produced by powder metallurgy,” Mater. Des., 56, 31 – 36 (2014).

    Article  CAS  Google Scholar 

  12. C. Liu, Y. Liu, C. P. Liang, et al., “Novel approach for fabrication and characterization of porosity-graded material,” Mater. Sci. Tech-load., 35, 1583 – 1591 (2019).

    Article  CAS  Google Scholar 

  13. A. Albiter, C. A. León, and R. A. L. Drew, “Microstructure and heat-treatment response of Al-2Al2/TiC composites,” Mater. Sci. Eng. A, 289, 109 – 115 (2000).

    Article  Google Scholar 

  14. M. Taherishargh, I. V. Belova, G. E. Murch, and T. Fiedler, “On the mechanical properties of heat-treated expanded perlite–aluminium syntactic foam,” Mater. Des., 63, 375 – 383 (2014).

    Article  CAS  Google Scholar 

  15. D. Lehmhus, C. Marschner, and J. Banhart, “Influence of heat treatment on compression fatigue of aluminum foams,” J. Mater. Sci., 37, 3447 – 3451 (2002).

    Article  CAS  Google Scholar 

  16. M. S. Musa, G. Maric, and K. Grilec, “Nanoindentation of closed cell Al alloy foams subjected to different heat treatment regimes,” Compos., Part B, 89, 383 – 387 (2016).

    Article  Google Scholar 

  17. Z. H. Wang, Z. Q. Li, and J. G. Ning, “Effect of heat treatments on the crushing behaviour and energy absorbing performance of aluminum alloy foams,” Mater. Des., 30, 977 – 982 (2009).

    Article  CAS  Google Scholar 

  18. F. Campana and D. Pilone, “Effect of heat treatments on the mechanical behavior of aluminum alloy foams,” Scr. Mater., 60, 679 – 682 (2009).

    Article  CAS  Google Scholar 

  19. J. Lázaro, E. Solórzano, M. A. Rodríguez-Pérez, et al., “Heat treatment of aluminum foam precursors: effects on foam expansion and final cellular structure,” Pro. Mater. Sci., 4, 287 – 292 (2014).

    Google Scholar 

  20. R. A. C. Daniel and E. Shahrzad, “Prediction of the effect of artificial aging heat treatment on the yield strength of an open-cell aluminum foam,” J. Mater. Sci., 43, 1121 – 1127 (2008).

    Article  Google Scholar 

  21. I. Alfonso, G. Lara, G. González, et al., “A novel solid state method for manufacturing Al foams by over solution heat treatment,” Mater. Lett., 174, 6 – 9 (2016).

    Article  CAS  Google Scholar 

  22. P. Schüler, R. Frank, D. Uebel, et al., “Influence of heat treatments on the microstructure and mechanical behaviour of open cell AlSi7Mg0.3 foams on different lengthscales,” Acta Mater., 109, 32 – 45 (2016).

    Article  Google Scholar 

  23. I. Alfonso, C. Maldonado, G. Gonzalez, and A. Bedolla, “Effect of Mg content and solution treatment on the microstructure of Al – Si – Cu – Mg alloys,” J. Mater. Sci., 41, 1945 – 1952 (2006).

    Article  CAS  Google Scholar 

  24. F. Saba, F. M. Zhang, S. L. Liu, and T. F. Liu, “Reinforcement size dependence of mechanical properties and strengthening mechanisms in diamond reinforced titanium metal matrix composites,” Compos., Part B, 167, 7 – 19 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liu.

Additional information

Notes. 1. The porosity of the powders is given in parentheses. 2. The numerators give the powder content in the alloy in mass percent; the dominators give it in atomic percent.

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 11, pp. 16 – 24, November, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Liu, Y., Wang, T. et al. Effects of Heat Treatment on the Microstructure and Properties of Graded-Density Powder Aluminum Alloys. Met Sci Heat Treat 63, 590–598 (2022). https://doi.org/10.1007/s11041-022-00734-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-022-00734-9

Key words

Navigation