Skip to main content
Log in

Comparison of X–T and X–X co-simulation techniques applied on railway dynamics

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Co-simulation techniques start to be of high interest when building a vehicle–track–soil model dedicated to ground-borne vibrations’ assessment. If this model includes a relatively comprehensive representation of the vehicle, track, and soil subdomains, different solvers may be used to simulate them. In this paper, the vehicle and track are modeled in a multibody dedicated software and the soil is simulated in a finite element analysis software. The aim of this paper is to investigate the effect of displacement/force and displacement/displacement co-simulation types in the case of coupled railway-soil dynamics. Both Jacobi and Gauß–Seidel approaches are used without iterations and using a zeroth-order hold extrapolation of the coupling variables. The modeling of the subdomains is described and an implementation of the co-simulation is proposed. By observing the ground and vehicle motions, as well as the peak particle velocity of the soil with respect to the distance from the track, it is stated that the choice of displacement/force or displacement/displacement co-simulation type has a significant effect on the results. Indeed, while the displacement/displacement type offers a larger stability region than the displacement/force type, the accuracy of the results is more heavily affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Thompson, D.J., Kouroussis, G., Ntotsios, E.: Modelling, simulation and evaluation of ground vibration caused by rail vehicles. Veh. Syst. Dyn. 57(7), 936–983 (2019)

    Article  Google Scholar 

  2. Stoura, C.D., Paraskevopoulos, E., Dimitrakopoulos, E.G., Natsiavas, S.: A dynamic partitioning method to solve the vehicle–bridge interaction problem. Comput. Struct. 251, 106547 (2021)

    Article  Google Scholar 

  3. Connolly, D., Giannopoulos, A., Forde, M.C.: Numerical modelling of ground borne vibrations from high speed rail lines on embankments. Soil Dyn. Earthq. Eng. 46, 13–19 (2013)

    Article  Google Scholar 

  4. Zhai, W., Sun, X.: A detailed model for investigating vertical interaction between railway vehicle and track. Veh. Syst. Dyn. 23(sup1) (1994)

  5. Zhai, W., He, Z., Song, X.: Prediction of high-speed train induced ground vibration based on train–track–ground system model. Earthq. Eng. Eng. Vib. 9(4), 545–554 (2010)

    Article  Google Scholar 

  6. Yang, J., Zhu, S., Zhai, W., Kouroussis, G., Wang, Y., Wang, K., Lan, K., Xu, F.: Prediction and mitigation of train-induced vibrations of large-scale building constructed on subway tunnel. Sci. Total Environ. 668, 485–499 (2019)

    Article  Google Scholar 

  7. Kouroussis, G., Van Parys, L., Conti, C., Verlinden, O.: Using three-dimensional finite element analysis in time domain to model railway-induced ground vibrations. Adv. Eng. Softw. 70, 63–76 (2014)

    Article  Google Scholar 

  8. Kouroussis, G., Connolly, D.P., Vogiatzis, K., Verlinden, O.: Modelling the environmental effects of railway vibrations from different types of rolling stock: a numerical study. Shock Vib. 2015, 142807 (2015)

    Google Scholar 

  9. Kouroussis, G., Florentin, J., Verlinden, O.: Ground vibrations induced by InterCity/InterRegion trains: a numerical prediction based on the multibody/finite element modeling approach. J. Vib. Control 22(20) (2016). https://doi.org/10.1177/1077546315573914

  10. González, F., Naya, M.Á., Luaces, A., González, M.: On the effect of multirate co-simulation techniques in the efficiency and accuracy of multibody system dynamics. Multibody Syst. Dyn. 25(4), 461–483 (2011)

    Article  Google Scholar 

  11. Busch, M.: Zur effizienten Kopplung von Simulationsprogrammen. PhD thesis, Kassel University (2012)

  12. Schweizer, B., Lu, D.: Semi-implicit co-simulation approach for solver coupling. Arch. Appl. Mech. 84(12), 1739–1769 (2014)

    Article  Google Scholar 

  13. Schweizer, B., Lu, D., Li, P.: Co-simulation method for solver coupling with algebraic constraints incorporating relaxation techniques. Multibody Syst. Dyn. 36(1), 1–36 (2016)

    Article  MathSciNet  Google Scholar 

  14. Li, P.: On the numerical stability of co-simulation methods. PhD thesis, Darmstadt Technische Universität (2017)

  15. Rahikainen, J., González, F., Naya, M.Á., Sopanen, J., Mikkola, A.: On the cosimulation of multibody systems and hydraulic dynamics. Multibody Syst. Dyn. 50(2), 143–167 (2020)

    Article  MathSciNet  Google Scholar 

  16. Rahikainen, J., González, F., Naya, M.Á.: An automated methodology to select functional co-simulation configurations. Multibody Syst. Dyn. 48(1) (2020). https://doi.org/10.1007/s11044-019-09696-y

  17. Chen, W., Ran, S., Wu, C., Jacobson, B.: Explicit parallel co-simulation approach: analysis and improved coupling method based on \(H_{\infty }\) synthesis. Multibody Syst. Dyn. 52, 255–279 (2021)

    Article  MathSciNet  Google Scholar 

  18. Dietz, S., Hippmann, G., Schupp, G.: Interaction of vehicles and flexible tracks by co-simulation of multibody vehicle systems and finite element track models. Veh. Syst. Dyn. 37(sup1), 372–384 (2002)

    Article  Google Scholar 

  19. Ambrósio, J., Pombo, J., Rauter, F., Pereira, M.: A memory based communication in the co-simulation of multibody and finite element codes for pantograph-catenary interaction simulation. In: Multibody Dynamics, pp. 231–252. Springer, Berlin (2009)

    MATH  Google Scholar 

  20. Massat, J.-P., Laurent, C., Bianchi, J.-P., Balmès, E.: Pantograph catenary dynamic optimisation based on advanced multibody and finite element co-simulation tools. Veh. Syst. Dyn. 52(Suppl. 1), 338–354 (2014)

    Article  Google Scholar 

  21. Antunes, P., Magalhães, H., Ambrósio, J., Pombo, J., Costa, J.: A co-simulation approach to the wheel–rail contact with flexible railway track. Multibody Syst. Dyn. 45(2), 245–272 (2019)

    Article  MathSciNet  Google Scholar 

  22. Gomes, C., Thule, C., Broman, D., Larsen, P., Vangheluwe, H.: Co-simulation: State of the art (2017). arXiv:1702.00686

  23. Gomes, C., Thule, C., Broman, D., Larsen, P., Vangheluwe, H.: Co-simulation: a survey. ACM Comput. Surv. 51(3), 49 (2018)

    Google Scholar 

  24. Wu, Q., Sun, Y., Spiryagin, M., Cole, C.: Parallel co-simulation method for railway vehicle–track dynamics. J. Comput. Nonlinear Dyn. 13(4), 041004 (2018)

    Article  Google Scholar 

  25. Olivier, B., Verlinden, O., Kouroussis, G.: Effect of applied force cosimulation schemes on recoupled vehicle/track problems. Multibody Syst. Dyn. 50(4), 337–353 (2020)

    Article  MathSciNet  Google Scholar 

  26. Costa, J.N., Antunes, P., Magalhães, H., Pombo, J., Ambrósio, J.: A finite element methodology to model flexible tracks with arbitrary geometry for railway dynamics applications. Comput. Struct. 254, 106519 (2021)

    Article  Google Scholar 

  27. Olivier, B., Verlinden, O., Kouroussis, G.: A vehicle/track/soil model using co-simulation between multibody dynamics and finite element analysis. Int. J. Rail Transp. 8(2), 135–158 (2020)

    Article  Google Scholar 

  28. Wang, J., Ma, Z.-D., Hulbert, G.M.: A gluing algorithm for distributed simulation of multibody systems. In: ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 89–104 (2003). American Society of Mechanical Engineers

    Google Scholar 

  29. Verlinden, O., Fékih, L.B., Kouroussis, G.: Symbolic generation of the kinematics of multibody systems in EasyDyn: from MuPAD to Xcas/Giac. Theor. Appl. Mech. Lett. 3(1), 013012 (2013)

    Article  Google Scholar 

  30. Olivier, B., Verlinden, O., Kouroussis, G.: A vehicle/track co-simulation model using EasyDyn. In: 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, pp. 1–10. Hersonissos, Greece (2019)

    Google Scholar 

  31. Dassault Systèmes - Simulia. ABAQUS 6.13 Documentation, 2013

  32. Kouroussis, G., Verlinden, O., Conti, C.: Free field vibrations caused by high-speed lines: measurement and time domain simulation. Soil Dyn. Earthq. Eng. 31(4), 692–707 (2011)

    Article  Google Scholar 

  33. Kouroussis, G., Verlinden, O., Conti, C.: On the interest of integrating vehicle dynamics for the ground propagation of vibrations: the case of urban railway traffic. Veh. Syst. Dyn. 48(12), 1553–1571 (2010)

    Article  Google Scholar 

  34. Nielsen, J.C.O., Abrahamsson, T.J.S.: Coupling of physical and modal components for analysis of moving non-linear dynamic systems on general beam structures. Int. J. Numer. Methods Eng. 33(9), 1843–1859 (1992)

    Article  Google Scholar 

  35. Peiret, A., González, F., Kövecses, J., Teichmann, M.: Multibody system dynamics interface modelling for stable multirate co-simulation of multiphysics systems. Mech. Mach. Theory 127, 52–72 (2018)

    Article  Google Scholar 

  36. Blockwitz, T., Otter, M., Akesson, J., Arnold, M., Clauss, C., Elmqvist, H., Friedrich, M., Junghanns, A., Mauss, J., Neumerkel, D., et al.: Functional mockup interface 2.0: the standard for tool independent exchange of simulation models. In: Proceedings of the 9th MODELICA Conference, Munich, Germany, pp. 173–184 (2012)

    Google Scholar 

  37. Dassault Systemes. Writing user subroutines with Abaqus

  38. Kouroussis, G., Verlinden, O., Conti, C.: Influence of some vehicle and track parameters on the environmental vibrations induced by railway traffic. Veh. Syst. Dyn. 50(4), 619–639 (2012)

    Article  Google Scholar 

  39. Deutsches Institut für Normung. DIN 4150-3: Structural vibrations–Part 3: Effects of vibration on structures (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Olivier.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivier, B., Verlinden, O. & Kouroussis, G. Comparison of X–T and X–X co-simulation techniques applied on railway dynamics. Multibody Syst Dyn 55, 39–56 (2022). https://doi.org/10.1007/s11044-022-09821-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-022-09821-4

Keywords

Navigation