Skip to main content
Log in

Ultrasound speckle reduction using adaptive wavelet thresholding

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Ultrasound is the most widely used biomedical imaging modality for the purpose of diagnosis. It often comes with speckle that results in reduced quality of images by hiding fine details like edges and boundaries, as well as texture information. In this present study, a novel wavelet thresholding technique for despeckling of ultrasound images is proposed. For analysing performance of the method, it is first tested on synthetic (ground truth) images. Speckle noise with distinct noise levels (0.01–0.04) has been added to the synthetic images in order to examine its efficiency at different noise levels. The proposed technique is applied to various orthogonal and biorthogonal wavelet filters. It has been observed that Daubechies 1 gives the best results out of all wavelet filters. The proposed method is further applied on ultrasound images. Performance of the proposed technique has been validated by comparing it with some state-of-the-art techniques. The results have also been validated visually by the expert. Results reveal that the proposed technique outperforms other state-of-the-art techniques in terms of edge preservation and similarities in structures. Thus, the technique is effective in reducing speckle noise in addition to preserving texture information that can be used for further processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbott, J. G., & Thurston, F. L. (1979). Acoustic speckle: Theory and experimental analysis. Ultrasonic Imaging, 1(4), 303–324.

    Article  Google Scholar 

  • Abd-Elmoniem, K. Z., Youssef, A.-B.M., & Kadah, Y. M. (2002). Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion. IEEE Transactions on Biomedical Engineering, 49(9), 997–1014.

    Article  Google Scholar 

  • Achim, A., Bezerianos, A., & Tsakalides, P. (2001). Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Transactions on Medical Imaging, 20(8), 772–783.

    Article  Google Scholar 

  • Alkishriwo, O. A., & Algarguri, D. E. (2021). Ultrasound image speckle reduction based on adaptive image decomposition algorithm. In IEEE 1st international maghreb meeting of the conference on sciences and techniques of automatic control and computer engineering MI-STA.

  • Alkishriwo, O. A. S. (2020). Image compression using adaptive multiresolution image decomposition algorithm. IET Image Processing, 14(14), 3572–3578.

    Article  Google Scholar 

  • Andria, G., Attivissimo, F., Cavone, G., Giaquinto, N., & Lanzolla, A. M. L. (2012). Linear filtering of 2-D wavelet coefficients for denoising ultrasound medical images. Measurement, 45(7), 1792–1800.

    Article  Google Scholar 

  • Andria, G., Attivissimo, F., Lanzolla, A. M., & Savino, M. (2013). A suitable threshold for speckle reduction in ultrasound images. IEEE Transactions on Instrumentation and Measurement, 62(8), 2270–2279.

    Article  Google Scholar 

  • Baselice, F. (2017). Ultrasound image despeckling based on statistical similarity. Ultrasound in Medicine & Biology, 43(9), 2065–2078.

    Article  Google Scholar 

  • Bedi, A. K., Sunkaria, R. K., & Mittal, D. (2019). Ultrasound image despeckling and enhancement using modified multiscale anisotropic diffusion model in non-subsampled shearlet domain. The Computer Journal, 6, 66.

    Google Scholar 

  • Burckhardt, C. B. (1978). Speckle in ultrasound B-mode scans. IEEE Transactions on Sonics and Ultrasonics, 25(1), 1–6.

    Article  Google Scholar 

  • Chang, S. G., Yu, B., & Vetterli, M. (2000). Adaptive wavelet thresholding for image denoising and compression. EEE Transactions on Image Processing, 9(9), 1532–1546.

    Article  MathSciNet  MATH  Google Scholar 

  • Cho, D., & Bui, T. D. (2005). Multivariate statistical modeling for image denoising using wavelet transforms. Signal Processing: Image Communication, 20(1), 77–89.

    Google Scholar 

  • Coupé, P., Hellier, P., Kervrann, C., & Barillot, C. (2009). Nonlocal means-based speckle filtering for ultrasound images. IEEE Transactions on Image Processing, 18(10), 2221–2229.

    Article  MathSciNet  MATH  Google Scholar 

  • Devi, P. N., & Asokan, R. (2014). An improved adaptive wavelet shrinkage for ultrasound despeckling. Sadhana, 39(4), 971–988.

    Article  Google Scholar 

  • Do, M. N., & Vetterli, M. (2003). The finite ridgelet transform for image representation. IEEE Transactions on Image Processing, 12(1), 16–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41(3), 613–627.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D. L., & Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, 90(432), 1200–1224.

    Article  MathSciNet  MATH  Google Scholar 

  • Firoiu, K., Nafornita, C., Boucher, J.-M., & Isar, A. (2009). Image denoising using a new implementation of the hyperanalytic wavelet transform. IEEE Transactions on Instrumentation and Measurement, 58(8), 2410–2416.

    Article  Google Scholar 

  • Frost, V. S., Stiles, J. A., Shanmugan, K. S., & Holtzman, J. C. (1982). A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, 157–166.

    Article  Google Scholar 

  • Gupta, S., Anand, R. S., & Tyagi, B. (2014). Speckle filtering of ultrasound images using a modified non-linear diffusion model in non-subsampled shearlet domain. IET Image Processing, 9(2), 107–117.

    Article  Google Scholar 

  • Gupta, S., Chauhan, R. C., & Saxena, S. C. (2004). Wavelet-based statistical approach for speckle reduction in medical ultrasound images. Medical and Biological Engineering and Computing, 42(2), 189–192.

    Article  Google Scholar 

  • Hiller, A. D., & Chin, R. T. (1991). Iterative wiener filters for image restoration. IEEE Transactions on Signal Processing, 39(8), 1892–1899.

    Article  Google Scholar 

  • Kuan, D. T., Sawchuk, A., Strand, T. C., & Chavel, P. (1987). Adaptive restoration of image with speckle. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(3), 373–383.

    Article  Google Scholar 

  • Labate, D., Lim, W.-Q., Kutyniok, G., & Weiss, G. (2005). Sparse multidimensional representation using shearlets. In Wavelets XI, SPIE, San Diego, California, United States.

  • Lee, J.-S. (1986). Speckle suppression and analysis for synthetic aperture radar images. Optical Engineering, 25(5), 170–179.

    Article  Google Scholar 

  • Loupas, T., McDicken, W. N., & Allan, P. L. (1989). An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Transactions on Circuits and Systems, 36(1), 129–135.

    Article  Google Scholar 

  • Mallat, S. G. (1989). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693.

    Article  MATH  Google Scholar 

  • Marchi, L. D., Testoni, N., & Speciale, N. (2006). Prostate tissue characterization via ultrasound speckle statistics. In 2006 IEEE international symposium on signal processing and information technology, Vancouver.

  • Mateo, J. L., & Fernández-Caballero, A. (2009). Finding out general tendencies in speckle noise reduction in ultrasound images. Expert Systems with Applications, 36(4), 7786–7797.

    Article  Google Scholar 

  • Mittal, D., Kumar, V., Saxena, S. C., Khandelwal, N., & Kalra, N. (2010). Enhancement of the ultrasound images by modified anisotropic diffusion method. Medical & Biological Engineering & Computing, 48(12), 1281–1291.

    Article  Google Scholar 

  • Nasri, M., & Nezamabadi-pour, H. (2009). Image denoising in the wavelet domain using a new adaptive thresholding function. Neurocomputing, 72(4), 1012–1025.

    Article  Google Scholar 

  • Pizurica, A., Philips, W., Lemahieu, I., & Acheroy, M. (2003). A versatile wavelet domain noise filtration technique for medical imaging. IEEE Transactions on Medical Imaging, 22(3), 323–331.

    Article  Google Scholar 

  • Pratt, W. K. (1991). Digital image processing (pp. 307–446). Wiley.

  • Rabbani, H., Vafadust, M., Abolmaesumi, P., & Gazor, S. (2008). Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors. IEEE Transactions on Biomedical Engineering, 55(9), 2152–2160.

    Article  Google Scholar 

  • Randhawa, S. K., Sunkaria, R. K., & Puthooran, E. (2019). Despeckling of ultrasound images using novel adaptive wavelet thresholding function. Multidimensional Systems and Signal Processing, 30(3), 1545–1561.

    Article  MATH  Google Scholar 

  • Sattar, F., Floreby, L., Salomonsson, G., & Lovstrom, B. (1997). Image enhancement based on a nonlinear multiscale method. IEEE Transactions on Image Processing, 6(6), 888–895.

    Article  Google Scholar 

  • Shruthi, G., Usha, B. S., & Sandya, S. (2012). A novel approach for speckle reduction and enhancement of ultrasound images. International Journal of Computer Applications, 45(20), 14–20.

    Google Scholar 

  • Starck, J.-L., Candès, E. J., & Donoho, D. L. (2002). The curvelet transform for image denoising. IEEE Transactions on Image Processing, 11(6), 670–684.

    Article  MathSciNet  MATH  Google Scholar 

  • Stein, M. (1981). Estimation of the mean of a multivariate normal distribution. The Annals of Statistics, 66, 1135–1151.

    MathSciNet  MATH  Google Scholar 

  • Sudha, S., Suresh, G. R., & Sukanesh, R. (2009). Speckle noise reduction in ultrasound images by wavelet thresholding based on weighted variance. International Journal of Computer Theory and Engineering, 1(1), 7.

    Article  Google Scholar 

  • Wagner, R. F. (1983). Statistics of speckle in ultrasound B-scans. IEEE Transactions on Sonics & Ultrasonics, 30(3), 156–163.

    Article  Google Scholar 

  • Wang, X.-Y., & Fu, Z.-K. (2010). A wavelet-based image denoising using least squares support vector machine. Engineering Applications of Artificial Intelligence, 23(6), 862–871.

    Article  Google Scholar 

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  • Yu, Y., & Acton, S. T. (2002). Speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing, 11(11), 1260–1270.

    Article  MathSciNet  Google Scholar 

  • Zhang, F., Yoo, Y. M., Koh, L. M., & Kim, Y. (2007). Nonlinear diffusion in Laplacian pyramid domain for ultrasonic speckle reduction. IEEE Transactions on Medical Imaging, 26(2), 200–211.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anterpreet Kaur Bedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedi, A.K., Sunkaria, R.K. Ultrasound speckle reduction using adaptive wavelet thresholding. Multidim Syst Sign Process 33, 275–300 (2022). https://doi.org/10.1007/s11045-021-00799-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-021-00799-4

Keywords

Navigation