Skip to main content
Log in

Inhibitory Effects of Ephedra major Host on Aspergillus parasiticus Growth and Aflatoxin Production

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

This study was undertaken to evaluate the effect of Ephedra major Host, an important medicinal plant with various biological activities, on growth and aflatoxin (AF) production by Aspergillus parasiticus NRRL 2999. The fungus was cultured in yeast extract-sucrose (YES) broth, a conductive medium that supports AF production, in the presence of various concentrations of essential oil (EO), hexanic and methanolic extracts of plant aerial parts, fruits, and roots using microbioassay technique. After incubating for 96 h at 28°C in static conditions, mycelial dry weight was determined as an index of fungal growth, and aflatoxin B1 (AFB1) was measured using HPLC technique. Based on the obtained results, EO of plant aerial parts significantly inhibited fungal growth at the highest concentration of 1000 μg/ml without any obvious effect on AFB1 production at all concentrations used. Among plant extracts tested, only methanolic extract of aerial parts and roots were found to inhibit fungal growth and AFB1 production dose-dependently with an IC50 value of 559.74 and 3.98 μg/ml for AFB1, respectively. Based on the GC/MS data, the major components of E. major EO were bis (2-ethylhexyl) phthalate (42.48%), pentacosane (20.94%), docosane (14.64%), citronellol (5.15%), heptadecan (4.41%), cis-3-Hexen-1-ol benzoate (4.07%), and 7-Octen-2-ol (3.25%). With respect to the potent inhibition of fungal growth and AF production by E. major, this plant may be useful in protecting crops from both toxigenic fungal growth and AF contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology. 2007;153:1677–92.

    Article  CAS  PubMed  Google Scholar 

  2. Kirk GD, Bah E, Montesano R. Molecular epidemiology of human liver cancer: insights into etiology, pathogenesis and prevention from The Gambia, West Africa. Carcinogenesis. 2006;27:2070–82.

    Article  CAS  PubMed  Google Scholar 

  3. Zaika LL, Buchanan RL. Review of compounds affecting the biosynthesis or bio-regulation of aflatoxins. J Food Prot. 1987;50:691–708.

    CAS  Google Scholar 

  4. Sakuda S, Ono M, Ikeda H, Nakamura T, Inagaki Y, Kawachi R, et al. Blasticidin A as an inhibitor of aflatoxin production by Aspergillus parasiticus. J Antibiot (Tokyo). 2000;68:407–12.

    Google Scholar 

  5. Rasooli I, Razzaghi-Abyaneh M. Inhibitory effects of Thyme oils on growth and aflatoxin production by Aspergillus parasiticus. Food Control. 2004;15:479–83.

    Article  CAS  Google Scholar 

  6. Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Eslamifar A, Schmidt OJ, Gharebaghi R, Karimian M, et al. Inhibitory effects of Akacid®plus on growth and aflatoxin production by Aspergillus parasiticus. Mycopathologia. 2006;161:245–9.

    Article  CAS  PubMed  Google Scholar 

  7. Razzaghi-Abyaneh M, Yoshinari T, Shams-Ghahfarokhi M, Rezaee MB, Nagasawa H, Sakuda S. Dillapiol and apiol as specific inhibitors for the biosynthesis of aflatoxin G1 in Aspergillus parasiticus. Biosci Biotechnol Biochem. 2007;71:2329–32.

    Article  CAS  PubMed  Google Scholar 

  8. Yoshinari T, Akiyama T, Nakamura K, Kondo T, Takahashi Y, Muraoka Y, et al. Dioctatin A is a strong inhibitor of aflatoxin production by Aspergillus parasiticus. Microbiology. 2007;153:2774–80.

    Article  CAS  PubMed  Google Scholar 

  9. Samy RP, Gopalakrishnakone P. Therapeutic potential of plants as anti-microbials for drug discovery. Evid-Based Compl Alter Med. 2008;eCAM:1–12.

    Google Scholar 

  10. Samuelsson G. Drugs of natural origin: a textbook of pharmacognosy. Stockholm: 5th Swedish Pharmaceutical Press; 2004.

    Google Scholar 

  11. Bidlack WR, Omaye ST, Meskin MS, Topham D. Phytochemicals as bioactive agents. Lancaster, UK: Technomic Publishing Company; 2000. p. 106–110.

  12. Stevenson DW. Ephedraceae. In: Flora of North America Editorial Committee, editor. Flora of North America, vol. 2. New York: Oxford University Press; 1993. p. 428–34.

    Google Scholar 

  13. Price RA. Systematics of the gnetales: a review of morphological and molecular evidence. Int J Plant Sci. 1996;157:S40–9.

    Article  Google Scholar 

  14. Anonymous. The Ephedras. Lawrence Review of Natural Products. MO: St. Louis; 1995. p. 1–2.

  15. Soni MG, Carabin IJ, Griffiths JC, Burdock GA. Safety of Ephedra: lessons learned. Toxicol Lett. 2004;150:97–110.

    Article  CAS  PubMed  Google Scholar 

  16. Miyazawa M, Minamino Y, Kameoka H. Volatile components of Ephedra sinica stapf. Flav Fragr J. 1997;12:15–7.

    Article  CAS  Google Scholar 

  17. Wang Q, Yang Y, Zhao X. Chemical variation in the essential oil of Ephedra sinica from Northeastern China. Food Chem. 2006;98:52–8.

    Article  CAS  Google Scholar 

  18. Tricker AR, Wacker CD, Preussmann R. 2-(N-nitroso-N-methylamino) propiophenone, a direct acting bacterial mutagen found in nitrosated Ephedra altissima tea. Toxicol Lett. 1987;38:45–50.

    Article  CAS  PubMed  Google Scholar 

  19. Al-Khalil S. Transtorine, a new quinoline alkaloid from Ephedra transitoria. J Natl Prod. 1998;61:262–3.

    Article  CAS  Google Scholar 

  20. Cottiglia F, Bonsignore L, Casu L, Deidda D. Phenolic constituents from Ephedra nebrodensis. Natl Prod Res. 2005;19:117–23.

    Article  CAS  Google Scholar 

  21. Feresin GE, Tapia A, Lopez SN, Zacchino SA. Antimicrobial activity of plants used in traditional medicine of Sun Juan Province, Argentine. J Ethnopharmacol. 2001;78:103–7.

    Article  CAS  PubMed  Google Scholar 

  22. Gurley BJ, Wang P, Gardner SF. Ephedrine-type alkaloid content of nutritional supplements containing Ephedra sinica (ma-huang) as determined by high performance liquid chromatography. J Pharmacol Sci. 1998;87:1547–53.

    Article  CAS  Google Scholar 

  23. Ghahreman A. Basic Botany. Tehran: Tehran University Publication; 1994. p. 443–50.

    Google Scholar 

  24. Davies NW. Gas chromatographic retention index of monoterpenes and sesquiterpenes on methyl silicone and carbowax 20 M phases. J Chromatogr. 1998;503:1–24.

    Article  Google Scholar 

  25. Ozdemir G, Karabay NU, Dalay MC, Pazarbasi B. Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phytother Res. 2004;18:754–8.

    Article  CAS  PubMed  Google Scholar 

  26. Rosato A, Vitali C, De Laurentis N. Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin. Phytomedicine. 2007;14:727–32.

    Article  CAS  PubMed  Google Scholar 

  27. Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Rezaee MB, Jaimand K, Alinezhad S, Saberi R, et al. Chemical composition, antiaflatoxigenic activity of Carum carvi L. Thymus vulgaris and Citrus aurantifolia essential oils. Food Control. 2009;20:1018–24.

    Article  CAS  Google Scholar 

  28. Rameshthangam P, Ramasamy P. Antiviral activity bis (2-methylheptyl) phthalate isolated from Pongamia pinnata leaves against white spot syndrome virus of Penaeus monodon Fabricus. Virus Res. 2007;126:38–44.

    Article  CAS  PubMed  Google Scholar 

  29. Fazly Bazzaz BS, Haririzadeh G. Screening of Iranian plants for antimicrobial activity. Pharm Biol. 2003;41:573–83.

    Article  Google Scholar 

  30. Aziz NH, Farag SE, Mousa LA, Abo-Zaid MA. Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios. 1998;93:43–54.

    CAS  PubMed  Google Scholar 

  31. Kim JH, Campbell BC, Mahoney NE, Chan KL, Molyneux RJ. Identification of phenolics for control of Aspergillus flavus using Saccharomyces cerevisiae in a model target-gene bioassay. J Agric Food Chem. 2004;52:7814–21.

    Article  CAS  PubMed  Google Scholar 

  32. Nawwar MAM, El-Sissi HI, Barakat HH. Flavonoid constituents of Ephedra alata. Phytochemistry. 1984;23:2937–9.

    Article  CAS  Google Scholar 

  33. Nawwar MAM, Barakat HH, Buddrust J, Linscheidt M. Alkaloidal, lignan and phenolic constituents of Ephedra alata. Phytochemistry. 1985;24:878–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was financially supported by Pasteur Institute of Iran. The authors wish to thank Afsaneh Dehnamaki from Mycology Department of Pasteur Institute of Iran for her helpful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Razzaghi-Abyaneh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagheri-Gavkosh, S., Bigdeli, M., Shams-Ghahfarokhi, M. et al. Inhibitory Effects of Ephedra major Host on Aspergillus parasiticus Growth and Aflatoxin Production. Mycopathologia 168, 249–255 (2009). https://doi.org/10.1007/s11046-009-9220-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-009-9220-x

Keywords

Navigation