Skip to main content

Advertisement

Log in

Low-temperature synthesis of nanocrystalline β-dicalcium silicate with high specific surface area

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

β-Dicalcium silicate (β-Ca2SiO4) was synthesized for the first time by a simple solution combustion method using citric acid as fuel. The influence of calcination temperature on the average crystallite size, specific surface area and morphology of the powders were investigated by X-ray diffraction technique (XRD), scanning electron microscopy (SEM) and N2 adsorption measurements (BET). The results showed that the increase of calcination temperature from 650°C to 1100°C resulted in larger crystallite size and lower specific surface area of β-Ca2SiO4. The highest specific surface area could reach as high as 26.7 m2/g when the as-burnt powders were calcined at 650°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Georgescu M., J. Tipan & A. Badanoiu, 2000. Highly reactive dicalcium silicate synthesised by hydrothermal processing. Cement Concrete Comp. 22(5), 315–319

    Article  CAS  Google Scholar 

  • Gou Z., J. Chang, W. Zhai & J. Wang, 2005. Study on the self-setting property and the in␣vitro bioactivity of β-Ca2SiO4. J. Biomed. Mater. Res. Part B: Appl. Biomat. 73B(2), 244–251

    Article  CAS  Google Scholar 

  • Ishida H., K. Mabuchi, K. Sasaki & T. Mitsuda, 1992. Low temperature synthesis of β-Ca2SiO4 from hillebrandite. J. Am. Ceram. Soc. 75(9), 2427–2432

    Article  CAS  Google Scholar 

  • Le N.T.H., J.M. Calderón-Moreno, M. Popa, D. Crespo, L.V. Hong & N.X. Phuc, 2006. LaNiO3 nanopowder prepared by an ‚amorphous citrate’ route. J. Eur. Ceram. Soc. 26(4–5), 403–407

    Article  CAS  Google Scholar 

  • Kantro D.L. & C.H. Weise, 1979. Hydration of various beta-dicalcium silicate preparation. J. Am. Ceram. Soc. 62(11–12), 621–626

    Article  CAS  Google Scholar 

  • Nakshatra B.S., R. Sarite & S. Neelam, 2002. Highly reactive β-Dicalcium silicate. J. Am. Ceram. Soc. 85(9), 2171–2176

    Article  Google Scholar 

  • Nettleship I. Jr., J.L. Shull & W.M. Kriven, 1993. Chemical preparation and phase stability of Ca2SiO4 and Sr2SiO4 powders. J. Eur. Ceram. Soc. 11(4), 291–298

    Article  CAS  Google Scholar 

  • Okada Y., H. Ishida, K. Sasaki, J.F. Young & T. Mitsuda, 1994. Characterization of C–S–H from highly reactive β-dicalcium silicate prepared from hillebrandite. J. Am. Ceram. Soc. 77(5), 1313–1318

    Article  CAS  Google Scholar 

  • Perry P.H. & C.H. Chilton, 1975. Chemical Engineers Handbook. 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Purohit R.D., B.P. Sharma, K.T. Pillai & A.K. Tyagi, 2001. Ultrafine ceria powders via glycine-nitrate combustion. Mater. Res. Bull. 36(15), 2711–2721

    Article  CAS  Google Scholar 

  • Ram D.P. & K.T. Avesh, 2002. Auto-ignition synthesis of nanocrystalline BaTi4O9 powder. J. Mater. Chem. 12(2), 312–316

    Article  Google Scholar 

  • Rodríguez J.L., M.A. Rodríguez, S. De Aza & P. Pena, 2001. Reaction sintering of zircon–dolomite mixtures. J. Eur. Ceram. Soc. 21(3), 343–354.

    Article  Google Scholar 

  • Roy D.M. & S.O. Oyefesobi, 1977. Preparation of very reactive Ca2SiO4 powder. J. Am. Ceram. Soc. 60(3–4), 178–180.

    Article  CAS  Google Scholar 

  • Roy D.M., T.P.O. Holleran & R.R. Neurgaonkar, 1978. Preparation and hydration studies of reactive β-Ca2SiO4 prepared by the EDS technique. Cemento 75(6), 337–342

    CAS  Google Scholar 

  • Singh N.B., 2006. Hydrothermal synthesis of b-dicalcium silicate (β-Ca2SiO4). Prog. Cryst Growth Ch. 52(1–2), 77–83

    Article  CAS  Google Scholar 

  • Smith D.K., A.J. Majumdar & F. Ordway, 1961. Re-examination of the polymorphism of dicalcium silicate. J. Am. Ceram. Soc. 44(8), 405–411

    Article  CAS  Google Scholar 

  • Vogan W., L. Hsu & A.R. Stetson, 1981. Thermal barrier coatings for thermal insulation and corrosion resistance in industrial gas turbine. Thin Solid Films 84(1), 75–87

    Article  CAS  Google Scholar 

  • Yang N. & B. Zhang, 1982. A study on active β-dicalcium silicate. J. Chin. Ceram. Soc. 10(3), 161–164

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially sponsored by the National Basic Science Research Program of China (973 Program) (Grant No. 2005CB522700), Science and Technology Commission of Shanghai Municipality (Grant No. 02JC14009), China Postdoctoral Science Foundation (Grant No. 060390649) and Shanghai Postdoctoral Scientific Program (Grant No. 06R214155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, XH., Chang, J. Low-temperature synthesis of nanocrystalline β-dicalcium silicate with high specific surface area. J Nanopart Res 9, 1195–1200 (2007). https://doi.org/10.1007/s11051-006-9202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9202-6

Keywords

Navigation