Skip to main content
Log in

Single Particle Extinction and Scattering allows novel optical characterization of aerosols

  • Technology and Application
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We apply to aerosols the optical method of Single Particle Extinction and Scattering recently proposed for characterizing liquid suspensions and specifically adapted to the aim. It provides simultaneous measurements of the real and imaginary parts of the field scattered in the forward direction by single airborne particles passing through a tightly focused laser beam. The intensity of transmitted light is collected in the forward direction, thus realizing a self-reference interferometric scheme relying on the fundamentals of the optical theorem. A high frequency (20 MS/s), extended dynamics (12 bits) sampling is performed by a cheap segmented photodiode, and a specific pulse shape analysis is exploited to validate the signals against a precise mathematical model. We show that accessing two independent physical quantities allows to exploit physical models to recover the aerosol size distribution from the measurement of the refractive index, either real or even complex. Laboratory measurements have been performed with polydisperse aerosols made of water droplets and NaCl in the submicron range, and the system has been accurately characterized. Examples of measurements of graphite nanoparticles and Pyrethrum smoke are shown. Limitations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Albani S, Mahowald NM, Perry AT, Scanza RA, Zender CS, Heavens NG, Maggi V, Kok JF, Otto-Bliesner BL (2014) Improved dust representation in the community atmosphere model. J Adv Model Earth Syst 6:541–570. doi:10.1002/2013MS000279

    Article  Google Scholar 

  • Andreae MO, Gelencsér A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148

    Article  Google Scholar 

  • Bassini A, Menchise M, Musazzi S, Paganini E, Perini U (1997) Interferometric system for precise submicrometer particle sizing. Appl Opt 36:8121–8127

    Article  Google Scholar 

  • Batchelder JS, Taubenblatt MA (1989) Interferometric detection of forward scattered light from small particles. Appl Phys Lett 55:215–217

    Article  Google Scholar 

  • Bauer E, Ganopolski A (2014) Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles. Clim Past 10:1333–1348

    Article  Google Scholar 

  • Bernardoni V, Valli G, Vecchi R (2017) Set-up of a multi wavelength polar photometer for off-line absorption coefficient measurements on 1-h resolved aerosol samples. J Aerosol Sci 107:84–93

    Article  Google Scholar 

  • Bohren CF, Huffmann DR (1983) Absorption and scattering by small particles. Wiley, New York

    Google Scholar 

  • Chemyakin E, Burton S, Kolgotin A, Müller D, Hostetler C, Ferrare R (2016) Retrieval of aerosol parameters from multiwavelength lidar: investigation of the underlying inverse mathematical problem. Appl Opt 55:2188–2202

    Article  Google Scholar 

  • Chylek P, Grams GW, Pinninck RG (1976) Light scattering by irregular randomly oriented particles. Science 193:480–482

    Article  Google Scholar 

  • Cotterell MI, Mason BJ, Preston TC, Orr-Ewing AJ, Reid JP (2015) Optical extinction efficiency Measurements on fine and accumulation mode aerosol using single particle cavity ring-down spectroscopy. Phys Chem Chem Phys 17:15843–15856. doi:10.1039/C5CP00252D

    Article  Google Scholar 

  • Cotterell MI, Preston TC, Orr-Ewing AJ, Reid JP (2016) Assessing the accuracy of complex refractive index retrievals from single aerosol particle cavity ring-down spectroscopy. Aerosol Sci Technol 50:1077–1095. doi:10.1080/02786826.2016.1219691

    Article  Google Scholar 

  • David G, Esat K, Ritsch I, Signorell R (2016) Ultraviolet broadband light scattering for optically-trapped submicron-sized aerosol particles. Phys Chem Chem Phys 18:5477–5485

    Article  Google Scholar 

  • Harvey LDD (1988) Climatic impact of ice-age aerosols. Nature 334:333–334

    Article  Google Scholar 

  • Heim M, Mullins BJ, Umhauer H, Kasper G (2008) Performance evaluation of three optical counters with an efficient “multimodal” calibration method. J Aerosol Sci 39:1019–1031

    Article  Google Scholar 

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, https://doi.org/10.1017/CBO9781107415324

  • Lack DA, Langridge JM (2013) On the attribution of black and brown carbon light absorption using the Ångström exponent. Atmos Chem Phys 13:10535–10543

    Article  Google Scholar 

  • Lambert F, Delmonte B, Petit JR, Bigler M, Kaufmann PR, Hutterli MA, Stocker TF, Ruth U, Steffensen JP, Maggi V (2008) Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452:616–619

    Article  Google Scholar 

  • Mishchenko MI, Hovenier JW, Travis LD (eds) (1999) Light scattering by nonspherical particles: theory, measurements, and applications. Academic Press, San Diego

    Google Scholar 

  • Moosmüller H, Chakrabarty RK, Arnott WP (2009) Aerosol light absorption and its measurement: a review. J Quant Spectrosc Radiat Transf 110:844–878

    Article  Google Scholar 

  • Nakagawa M, Nakayama T, Sasago H, Ueda S, Venables DS, Matsumi Y (2016) Design and characterization of a novel single-particle polar nephelometer. Aerosol Sci Technol 50:392–404

    Article  Google Scholar 

  • Newton RG (1976) Optical theorem and beyond. Am J Phys 44:639–642

    Article  Google Scholar 

  • Potenza MA, Sabareesh KP, Carpineti M, Alaimo MD, Giglio M (2010) How to measure the optical thickness of scattering particles from the phase delay of scattered waves: application to turbid samples. Phys Rev Lett 105:193901

    Article  Google Scholar 

  • Potenza MAC, Milani P (2014) Free nanoparticle characterization by optical scattering field analysis: opportunities and perspectives. J Nanopart Res 16:2680

    Article  Google Scholar 

  • Potenza MAC, Sanvito T, Pullia A (2015b) Measuring the complex field scattered by single submicron particles. AIP Adv 5:117222

    Article  Google Scholar 

  • Potenza MAC, Sanvito T, Argentiere S, Cella C, Paroli B, Lenardi C, Milani P (2015a) Single particle optical extinction and scattering allows real time quantitative characterization of drug payload and degradation of polymeric nanoparticles. Sci Rep 5:18228

    Article  Google Scholar 

  • Potenza MAC, Sanvito T, Pullia A (2015c) Accurate sizing of ceria oxide nanoparticles in slurries by the analysis of the optical forward scattered field. J Nanopart Res 17:110

    Article  Google Scholar 

  • Potenza MAC, Albani S, Delmonte B, Villa S, Sanvito T, Paroli B, Pullia A, Baccolo G, Mahowald N, Maggi V (2016) Shape and size constraints on dust optical properties from the Dome C ice core, Antarctica. Sci Rep 6:28162

    Article  Google Scholar 

  • Ruth U (2002) Concentration and size distribution of microparticles in the NGRIP Ice Core (Central Greenland) during the last glacial period. PhD Dissertation at Department of Geosciences of the University of Bremen. Published as Report n. 428 of the Berichte zur Polar- und Meeresforschung (ISSN 1618-3193). Available at: http://www.ub.uni-heidelberg

  • Sachweh B, Umhauer H, Ebert F, Buttner H, Friehmelt R (1998) In situ optical particle counter with improved coincidence error correction for number concentrations up to 107 particles cm−3. J Aerosol Sci 29:1075–1086

    Article  Google Scholar 

  • Sanvito T, Zocca F, Pullia A, Potenza MAC (2013) A method for characterizing the stability of light sources. Opt Express 21:24630–24635

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics. From air pollution to climate change. Wiley, New York

    Google Scholar 

  • Sorensen CM (2001) Light scattering by fractal aggregates: a review. Aerosol Sci Technol 35:648–687

    Article  Google Scholar 

  • Taubenblatt MA, Batchelder JS (1991) Measurement of the size and refractive index of a small particle using the complex forward-scattered electromagnetic field. Appl Opt 30:4972–4979

    Article  Google Scholar 

  • Utry N, Ajtai T, Filep Á, Dániel PM, Hoffer A, Bozoki Z, Szabó G (2013) Mass specific optical absorption coefficient of HULIS aerosol measured by a four-wavelength photoacoustic spectrometer at NIR, VIS and UV wavelengths. Atmos Environ 69:321–324

    Article  Google Scholar 

  • Van de Hulst HC (1981) Light scattering by small particles. Dover, New York

    Google Scholar 

  • Vecchi R, Bernardoni V, Paganelli C, Valli G (2014) A filter-based light-absorption measurement with polar photometer: effects of sampling artefacts from organic carbon. J Aerosol Sci 70:15–25

    Article  Google Scholar 

  • Villa S, Sanvito T, Paroli B, Pullia A, Delmonte B, Potenza MAC (2016) Measuring shape and size of micrometric particles from the analysis of the forward scattered field. J Appl Phys 119:224901

    Article  Google Scholar 

  • Zarzana KJ, Cappa CD, Tolbert MA (2014) Sensitivity of aerosol refractive index retrievals using optical spectroscopy. Aerosol Sci Technol 48:1133–1144

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Marzio Giglio for useful discussions, F. Cavaliere and D. Viganò of the Mechanical Workshop of the Physics Department for supporting the realization of the SPES instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. C. Potenza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariani, F., Bernardoni, V., Riccobono, F. et al. Single Particle Extinction and Scattering allows novel optical characterization of aerosols. J Nanopart Res 19, 291 (2017). https://doi.org/10.1007/s11051-017-3995-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3995-3

Keywords

Navigation