Skip to main content
Log in

Photoinduced charge transfer studies of type-II core-shell ZnTe-ZnSe quantum dots

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this communication, we discuss the photoinduced charge transfer between type-II ZnTe-ZnSe core-shell quantum dots and a molecular adsorbate methyl viologen. The oleic acid-capped core-shell nanostructures were synthesized using organometallic high-temperature route and were characterized using UV-visible absorption spectroscopy, photoluminescence spectroscopy, X-ray diffraction, high-resolution transmission electron microscopy, selected area electron diffraction, inductive coupled plasma optical emission spectroscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The charge transfer behaviour of the core-shell quantum dots in the presence of methyl viologen was investigated by monitoring variations in photoluminescence and life time using steady-state and time-resolved techniques, and the results indicated static processes in the charge transfer interactions. The charge transfer capability of a core-shell system is extremely important while considering it in photovoltaic applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baghchesara MA, Yousefi R, Cheraghizade M, Jamali-Sheini F, Sa’aedi A (2016) Photocurrent application of Cd-doped ZnTe nanowires grown in a large scale by a CVD method. Vacuum 123:131–135

    Article  CAS  Google Scholar 

  • Bang J, Park J, Lee JH, Won N, Nam J, Lim J, Chang BY, Lee HJ, Chon B, Shin J, Park JB (2010) ZnTe/ZnSe (core/shell) type-II quantum dots: their optical and photovoltaic properties. Chem Mater 22:233–240

    Article  CAS  Google Scholar 

  • Billone PS, Maretti L, Maurel V, Scaiano JC (2007) Dynamics of the dissociation of a disulfide biradical on a CdSe nanoparticle surface. J Am Chem Soc 129:14150–14151

    Article  CAS  Google Scholar 

  • Bose DN, Hedge MS, Basu S, Mandal KC (1989) XPS investigation of CdTe surfaces: effect of Ru modification. Semicond Sci Technol 4:866–870

    Article  CAS  Google Scholar 

  • Cullity SR, Stock BD (2001) Deceased. Elements of X-ray diffraction

  • Donega CM (2011) Synthesis and properties of colloidal heteronanocrystals. Chem Soc Rev 40:1512–1546

    Article  CAS  Google Scholar 

  • dos Santos JAL, Baum F, Kohlrausch EC, Tavares FC, Pretto T, dos Santos FP, Leite Santos JF, Khan S, Leite Santos MJ (2019) 3-Mercaptopropionic, 4-mercaptobenzoic, and oleic acid-capped CdSe quantum dots: interparticle distance, anchoring groups, and surface passivation. J Nanomater. https://doi.org/10.1155/2019/2796746

  • Du J, Du Z, Hu JS, Pan Z, Shen Q, Sun J, Long D, Dong H, Sun L, Zhong X, Wan LJ (2016) Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J Am Chem Soc 138:4201–4209

    Article  CAS  Google Scholar 

  • Duan J, Zhang H, Tang Q, He B, Yu L (2015) Recent advances in critical materials for quantum dot-sensitized solar cells: a review. J Mat Chem A 3:17497–17510

    Article  CAS  Google Scholar 

  • Fairclough SM, Tyrrell EJ, Graham DM, Lunt PJ, Hardman SJ, Pietzsch A, Hennies F, Moghal J, Flavell WR, Watt AA, Smith JM (2012) Growth and characterization of strained and alloyed type-II ZnTe/ZnSe core–shell nanocrystals. J Phys Chem C 116:26898–26907

    Article  CAS  Google Scholar 

  • Garcia-Santamaria F, Chen Y, Vela J, Schaller RD, Hollingsworth JA, Klimov VI (2009) Suppressed auger recombination in “giant” nanocrystals boosts optical gain performance. Nano Lett 9:3482–3488

    Article  CAS  Google Scholar 

  • Green M (2010) The nature of quantum dot capping ligands. J Mater Chem 20:5797–5809

    Article  CAS  Google Scholar 

  • Halpert JE, Porter VJ, Zimmer JP, Bawendi MG (2006) Synthesis of CdSe/CdTe nanobarbells. J Am Chem Soc 128:12590–12591

    Article  CAS  Google Scholar 

  • Htoon H, Malko AV, Bussian D, Vela J, Chen Y, Hollingsworth JA, Klimov VI (2010) Highly emissive multiexcitons in steady-state photoluminescence of individual “giant” CdSe/CdS core/shell nanocrystals. Nano Lett 10:2401–2407

    Article  CAS  Google Scholar 

  • Jamble SN, Ghoderao KP, Kale RB (2017) Hydrothermal assisted growth of CdSe nanoparticles and study on its dielectric properties. Mater Res Express 4:115029

    Article  Google Scholar 

  • Jang YJ, Jang JW, Lee J, Kim JH, Kumagai H, Lee J, Minegishi T, Kubota J, Domen K, Lee JS (2015) Selective CO production by Au coupled ZnTe/ZnO in the photoelectrochemical CO2 reduction system. Energ Envn Sci 8:3597–3604

    Article  CAS  Google Scholar 

  • Jiang ZJ, Leppert V, Kelley DF (2009) Static and dynamic emission quenching in core/shell nanorod quantum dots with hole acceptors. J Phys Chem C 113:19161–19171

    Article  CAS  Google Scholar 

  • Jiao S, Shen Q, Mora-Sero I, Wang J, Pan Z, Zhao K, Kuga Y, Zhong X, Bisquert J (2015) Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells. ACS Nano 9:908–915

    Article  CAS  Google Scholar 

  • Khan SN, Islam B, Khan AU (2007) Probing midazolam interaction with human serum albumin and its effect on structural state of protein. Int J Integr Biol 1:102–112

    CAS  Google Scholar 

  • Khan SN, Islam B, Rajeswari MR, Usmani H, Khan AU (2008) Interaction of anesthetic supplement thiopental with human serum albumin. Acta Biochim Pol 55:399

    Article  CAS  Google Scholar 

  • Kim S, Fisher B, Eisler HJ, Bawendi M (2003) Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J Am Chem Soc 125:11466–11467

    Article  CAS  Google Scholar 

  • Lee DC, Robel I, Pietryga JM, Klimov VI (2010) Infrared-active heterostructured nanocrystals with ultralong carrier lifetimes. J Am Chem Soc 132:9960–9962

    Article  CAS  Google Scholar 

  • Mastria R, Rizzo A (2016) Mastering heterostructured colloidal nanocrystal properties for light-emitting diodes and solar cells. J Mater Chem C 4:6430–6446

    Article  CAS  Google Scholar 

  • Morello G, Anni M, Cozzoli PD, Manna L, Cingolani R, De Giorgi M (2007) Picosecond photoluminescence decay time in colloidal nanocrystals: the role of intrinsic and surface states. J Phys Chem C 111:10541–10545

    Article  CAS  Google Scholar 

  • Ning Z, Tian H, Yuan C, Fu Y, Qin H, Sun L, Agren H (2011) Solar cells sensitized with type-II ZnSe–CdS core/shell colloidal quantum dots. Chem Commun 47:1536–1538

    Article  CAS  Google Scholar 

  • Pal A, Srivastava S, Gupta R, Sapra S (2013) Electron transfer from CdSe–ZnS core–shell quantum dots to cobalt (III) complexes. Phys Chem Chem Phys 15:15888–15895

    Article  CAS  Google Scholar 

  • Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  • Potlog T, Duca D, Dobromir M (2015) Temperature-dependent growth and XPS of Ag-doped ZnTe thin films deposited by close space sublimation method. Appl Surf Sci 352:33–37

    Article  CAS  Google Scholar 

  • Reiss P (2007) ZnSe based colloidal nanocrystals: synthesis, shape control, core/shell, alloy and doped systems. New J Chem 31:1843–1852

    Article  CAS  Google Scholar 

  • Reiss P, Protiere M, Li L (2009) Core/shell semiconductor nanocrystals. small 5:154–168

    Article  CAS  Google Scholar 

  • Selmarten D, Jones M, Rumbles G, Yu P, Nedeljkovic J, Shaheen S (2005) Quenching of semiconductor quantum dot photoluminescence by a π-conjugated polymer. J Phys Chem B 109:15927–15932

    Article  CAS  Google Scholar 

  • Sharma D, Jha R, Kumar S (2016) Quantum dot sensitized solar cell: recent advances and future perspectives in photoanode. Sol Energy Mater Sol Cells 155:294–322

    Article  CAS  Google Scholar 

  • Stern O, Volmer M (1919) The extinction period of fluorescence. Phys Z 20:183

    CAS  Google Scholar 

  • Stolle CJ, Panthani MG, Harvey TB, Akhavan VA, Korgel BA (2012) Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals. ACS Appl Mater Interfaces 4:2757–2761

    Article  CAS  Google Scholar 

  • Wang J, Mora-Sero I, Pan Z, Zhao K, Zhang H, Feng Y, Yang G, Zhong X, Bisquert J (2013) Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J Am Chem Soc 135:15913–15922

    Article  CAS  Google Scholar 

  • Zhang Y, Jing P, Zeng Q, Sun Y, Su H, Wang YA, Kong X, Zhao J, Zhang H (2009) Photoluminescence quenching of CdSe core/shell quantum dots by hole transporting materials. J Phys Chem C 113:1886–1890

    Article  CAS  Google Scholar 

  • Zhang F, Zhong H, Chen C, Wu X, Hu X, Huang H, Han J, Zou B, Dong Y (2015) Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9:4533–4542

    Article  CAS  Google Scholar 

  • Zhao H, Liang H, Gonfa BA, Chaker M, Ozaki T, Tijssen P, Vidal F, Ma D (2014) Investigating photoinduced charge transfer in double-and single-emission PbS@ CdS core@ shell quantum dots. Nanoscale 6:215–225

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author V. V. Ison gratefully acknowledges SERB, DST, Govt. of India, for a fast track project (Order No. SR/FTP/PS-108/2010). The author also thanks Dr. P.R. Biju, Mahatma Gandhi University, Kottayam, for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ison V. V..

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

N. J., S., Tom, A.E., R., V. et al. Photoinduced charge transfer studies of type-II core-shell ZnTe-ZnSe quantum dots. J Nanopart Res 22, 135 (2020). https://doi.org/10.1007/s11051-020-04851-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04851-5

Keywords

Navigation