Skip to main content
Log in

Comparative analysis of light trapping GaN nanohole and nanorod arrays for UV detectors

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this paper, based on the excellent light trapping performance of the nanostructure, the structure of the electron emission layer of the ultraviolet detector is optimized. In this paper, simulation models of gallium nitride (GaN) nanohole arrays and nanorod arrays are designed by COMSOL Multiphysics software, which is based on the finite element method (FEM). In order to optimize the geometric parameters of GaN nanohole and nanorod arrays, and understand the influence of polarized light on them, the light absorption performance in the ultraviolet (UV) band has been fully analyzed. We found that when the lattice constant ranges from 200 to 500 nm, the GaN nanohole array and the GaN nanorod array have extreme absorptivity. And when the incident light has an inclination of 20°, the light trapping performance of the nanohole array can be further improved. GaN nanostructures with high light trapping capabilities will help improve the photoelectric emission efficiency of GaN photocathode and provide design reference for UV detectors with excellent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

References

  • Adib MMH, Mullick TU, Khalil MI, Chowdhury AM, Chang GK, Amin N (2012) Optical absorption enhancement in slanted micro-hole C-Si for photovoltaic applications. 2012 Asia communications and photonics conference (ACP 2012) 3

  • Antoine-Vincent N, Natali F, Mihailovic M, Vasson A, Leymarie J, Disseix P, Byrne D, Semond F, Massies J (2003) Determination of the refractive indices of AlN, GaN, and grown on (111) Si substrates. J Appl Phys 93(9):5222–5226

    Article  CAS  Google Scholar 

  • Cao LY, Fan PY, Vasudev AP, White JS, Yu ZF, Cai WS, Schuller JA, Fan SH, Brongersma ML (2010) Semiconductor nanowire optical antenna solar absorbers. Nano Lett 10(2):439–445

    Article  CAS  Google Scholar 

  • Chen TG, Yu PC, Chen SW, Chang FY, Huang BY, Cheng YC, Hsiao JC, Li CK, Wu YR (2014) Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics. Prog Photovolt 22(4):452–461

    Article  CAS  Google Scholar 

  • Cheng HB, Li J, Wu DX, Li YX, Wang ZG, Wang XY, Zheng XJ (2015) Effects of precursor-substrate distances on the growth of GaN nanowires. J Nanomater 343541

  • Chung BC, Gershenzon M (1992) The influence of oxygen on the electrical and optical properties of GaN crystals grown by metalorganic vapor phase epitaxy. J Appl Phys 72(2):651–659

    Article  CAS  Google Scholar 

  • Deng C, Tan XY, Jiang LH, Tu YT, Ye M, Yi YS (2018) Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications. Opt Commun 407:199–203

    Article  CAS  Google Scholar 

  • Du QG, Kam CH, Demir HV, Yu HY, Sun XW (2011) Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications. Opt Lett 36(9):1713–1715

    Article  CAS  Google Scholar 

  • Fang X, Zhao CY, Bao H (2014) Radiative behaviors of crystalline silicon nanowire and nanohole arrays for photovoltaic applications. J Quant Spectrosc Radiat Transf 133:579–588

    Article  CAS  Google Scholar 

  • Fu R, Chang B, Qian Y, Qiu Y, Yang Y (2010) The research of surface state and photoelectronic emission characteristic of NEA GaN photocathode. In: Proceedings 8th International Vacuum Electron Sources Conference and Nanocarbon (2010 IVESC) 83-83

    Google Scholar 

  • Fu R, Wu XF, Wang XL, Ma W, Yuan L, Gao L, Huang KK, Feng SH (2018) Low-temperature hydrothermal fabrication of Fe3O4 nanostructured solar selective absorption films. Appl Surf Sci 458:629–637

    Article  CAS  Google Scholar 

  • Garnett E, Yang PD (2008) Silicon nanowire radial p-n junction solar cells. J Am Chem Soc 130(29):9224–9225

    Article  CAS  Google Scholar 

  • Garnett E, Yang PD (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10(3):1082–1087

    Article  CAS  Google Scholar 

  • Han SE, Chen G (2010) Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett 10(3):1012–1015

    Article  CAS  Google Scholar 

  • Hong L, Rusli WXC, Zheng HY, Wang H, Yu HY (2014) Design guidelines for Si (1 1 1) inclined nanohole arrays in thin-film solar cells. IEEE Trans Nanotechnol 13(3):431–436

    Article  CAS  Google Scholar 

  • Kang SH, Fang TH (2014) Size effect on compression properties of GaN nanocones examined using in situ transmission electron microscopy. J Alloys Compd 597:72–78

    Article  CAS  Google Scholar 

  • Kim YJ, Lee GJ, Kim S, Min JW, Jeong SY, Yoo YJ, Lee S, Song YM (2018) Efficient light absorption by GaN truncated nanocones for high performance water splitting applications. ACS Appl Mater Interfaces 10(34):28672–28678

    Article  CAS  Google Scholar 

  • Li YH, Yan X, Wu Y, Zhang X, Ren XM (2015) Plasmon-enhanced light absorption in GaAs nanowire Array solar cells. Nanoscale Res Lett 10:436

    Article  Google Scholar 

  • Lin H, Xiu F, Fang M, Yip S, Cheung HY, Wang FY, Han N, Chan KS, Wong CY, Ho JC (2014) Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting. ACS Nano 8(4):3752–3760

    Article  CAS  Google Scholar 

  • Look DC, Jones RL, Sun XL, Brillson LJ, Ager JW, Park SS, Han JH, Molnar RM, Maslar JE (2002) Electrical and optical properties of GaN/Al2O3 interfaces. J Phys-Condensed Matter 14(48):13337–13344

    Article  CAS  Google Scholar 

  • Makableh YF, Al-Fandi M, Khasawneh M, Tavares CJ (2018) Comprehensive design analysis of ZnO anti-reflection nanostructures for Si solar cells. Superlattice Microst 124:1–9

    Article  CAS  Google Scholar 

  • Peng KQ, Wang X, Li L, Wu XL, Lee ST (2010) High-performance silicon nanohole solar cells. J Am Chem Soc 132(20):6872–6873

    Article  CAS  Google Scholar 

  • Tan XY, Yan WS, Tu YT, Deng C (2017) Small pyramidal textured ultrathin crystalline silicon solar cells with double-layer passivation. Opt Express 25(13):14725–14731

    Article  CAS  Google Scholar 

  • Wang XL, Wu XF, Yuan L, Zhou CP, Wang YX, Huang KK, Feng SH (2016) Solar selective absorbers with foamed nanostructure prepared by hydrothermal methid on stainless stell. Sol Energy Mater Sol Cells 146:99–106

    Article  CAS  Google Scholar 

  • Wang JZ, Xu ZP, Bian F, Wang HY, Wang J (2017a) Design and analysis of light trapping in thin-film gallium arsenide solar cells using an efficient hybrid nanostructure. J Nanophoton 11(4):046017

    Article  Google Scholar 

  • Wang XL, Wu XF, Yuan L, Huang KK, Feng SH (2017b) Ultra-low reflection CuO nanowire array in-situ grown on copper sheet. Mater Des 113:297–304

    Article  CAS  Google Scholar 

  • Wu D, Tang XH, Wang K, He ZB, Li XQ (2017) An efficient and effective design of InP nanowires for maximal solar energy harvesting. Nanoscale Res Lett 12(1):604

    Article  Google Scholar 

  • Xu ZP, Huangfu HC, Li XW, Qiao HL, Guo WC, Guo JW, Wang HY (2016) Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells. Opt Commun 377:104–109

    Article  CAS  Google Scholar 

  • Xu ZP, Huangfu HC, He L, Wang JZ, Yang D, Guo JW, Wang HY (2017) Light-trapping properties of the Si inclined nanowire arrays. Opt Commun 382:332–336

    Article  CAS  Google Scholar 

  • Yoshida H, Urushido T, Miyake H, Hiramtsu K (2001) Formation of GaN self-organized nanotips by nanomasking effect. MRS Online Proc Library Archive 693(40):1301

    Google Scholar 

Download references

Funding

This work is supported by Qing Lan Project of Jiangsu Province-China (Grant No.2017-AD41779) and the Six Talent Peaks Project in Jiangsu Province-China (Grant No.2015-XCL-008). Qinghua Lv of Hubei University of Technology is greatly appreciated for the help of COMSOL Multiphysics Business Package calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhangyang, X., Liu, L., Lv, Z. et al. Comparative analysis of light trapping GaN nanohole and nanorod arrays for UV detectors. J Nanopart Res 22, 243 (2020). https://doi.org/10.1007/s11051-020-04972-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04972-x

Keywords

Navigation