Skip to main content
Log in

β → δ phase transition and initial decomposition of HMX nanoparticle from reactive molecular dynamics simulations

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We employed ReaxFF molecular dynamics (MD) to simulate the physicochemical properties of HMX nanoparticle at low temperatures. As the temperature increases, its physical and chemical properties change accompanying some transition, which is not reported by any previous studies. The Poisson Scoring Model was used to count phase transition. It is found that the number of the β- to δ-HMX conformational transition at 458 K is higher than that at other temperatures. The types of decomposition products of the HMX nanoparticle at low temperatures are the same as those by pervious high-temperature experiments and theoretical simulations. The decomposition of the HMX nanoparticle is triggered by the C–H bond dissociation. Its decomposition includes two steps. The one is the decay of the HMX molecules, which is called the direct influence of the solid phase; the other one is the second reaction of small intermediate in less condensed phase. Moreover, the temperature will deeply affect the duration of each stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9

Similar content being viewed by others

References

  • Asay B, Henson B, Smilowitz L, Dickson PM (2003) On the difference in impact sensitivity of beta and delta HMX. J Energ Mater 21:223–235

    Article  CAS  Google Scholar 

  • Behrens R, Bulusu S (1995) Thermal decomposition of hmx: low temperature reaction kinetics and their use for assessing response in abnormal thermal environments and implications for long-term aging. MRS Proc 418:119

  • Brill TB, Brush PJ, Kinloch PGA (1992) Energetic materials: condensed phase chemistry of explosives and propellants at high temperature: hmx, rdx and bamo [and discussion]. Philos Trans Phys Sci Eng 339:377–385

  • Burnham AK, Weese RK, Weeks BL (2004) A distributed activation energy model of thermodynamically inhibited nucleation and growth reactions and its application to the β−δ phase transition of HMX. J Phys Chem B 108:19432–19441

    Article  CAS  Google Scholar 

  • Cady HH, Smith LC, Laboratory LAS, Commission USAE (1962) Studies on the Polymorphs of HMX. Los Alamos Scientific Laboratory of the University of California, California

    Google Scholar 

  • Cady HH, Larson AC, Cromer DT (1963) The crystal structure of α-HMX and a refinement of the structure of β-HMX. Acta Cryst 16:617–623

    Article  CAS  Google Scholar 

  • Chen L, Ma X, Huang YM, Wu JY, Chang XM (2011a) Multi-point temperature measuring cook-off test and numerical simulation of explosive. Acta Armamentarii 32:1230–1236

    Google Scholar 

  • Chen J, Long Y, Liu Y, Nie F, Sun J (2011b) The first-principle study on the equation of state of HMX under high pressure. Sci China Phys Mech Astron 54:831–835

    Article  CAS  Google Scholar 

  • Cobbledick RE, Small RW (1974) The crystal structure of the δ-form of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (δ-HMX). Acta Cryst 30:1918–1922

    Article  Google Scholar 

  • Cui HL, Ji GF, Chen XR, Zhu WH, Zhao F, Wen Y, Wei DQ (2010) First-principles study of high-pressure behavior of solid β-HMX. J Phys Chem A 114:1082–1092

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09. Gaussian, Inc., Wallingford

    Google Scholar 

  • Fukui K (1981) The path of chemical reactions - the IRC approach. Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  • Glascoe EA, Zang JM, Burnham K (2009) Pressure-dependent decomposition kinetics of the energetic material HMX up to 3.6 GPa. J Phys Chem A 113:13548–13555

    Article  CAS  Google Scholar 

  • Goetz Z, Brlll TB (1979) Laser Raman spectra of .alpha.-, .beta.-, .gamma.-, and .delta.-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and their temperature dependence. J Phys Chem 83:340–346

    Article  CAS  Google Scholar 

  • Henson BF, Asay BW, Sander RK, Son SF, Robinson JM, Dickson PM (1999) Dynamic measurement of the HMXβ-δphase transition by second harmonic generation. Phys Rev Lett 82:1213–1216

    Article  CAS  Google Scholar 

  • Henson BF, Smilowitz L, Asay BW, Dickson PM (2002) The β–δ phase transition in the energetic nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: thermodynamics. J Chem Phys 117:3780–3788

    Article  CAS  Google Scholar 

  • Herrmann M, Engel W, Eisenreich N (1993) Thermal analysis of the phases of HMX using X-ray diffraction. Zeitschrift Für Kristallographie Crystal Mater 204:121–128

    CAS  Google Scholar 

  • Ji GF, Xiao HM, Dong HS (2002) High level calculations on structure and properties of crystalline β-HMX. Acta Chim Sin 60:194–199

    CAS  Google Scholar 

  • Karpowicz RJ, Gelfand LS, Brill TB (1983) Application of solid-phase transition kinetics to the properties of HMX. AIAA J 21:310–312

    Article  CAS  Google Scholar 

  • Kuklja MM, Tsyshevsky RV, Sharia O (2017) Elucidation of high sensitivity of δ-HMX: New insight from first principles simulations. Am Inst Phys 1793:070007

    Google Scholar 

  • Lewis JP (2003) Energetics of intermolecular HONO formation in condensed-phase octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). Chem Phys Lett 371:588–593

    Article  CAS  Google Scholar 

  • Liu Z, Zhu W, Ji G, Song K, Xiao H (2017) Decomposition mechanisms of α-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine nanoparticles at high temperatures. J Phys Chem C 121:7728–7740

    Article  CAS  Google Scholar 

  • Lu LY, Wei DQ, Chen XR, Lian D, Ji GF, Zhang QM, Gong ZZ (2008) The first principle studies of the structural and vibrational properties of solid β-HMX under compression. Mol Phys 106:2569–2580

    Article  CAS  Google Scholar 

  • Nlemantsverdrlet JW, Kraan AMVD, Dilk WLV, Bean SVD (1980) Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with Mössbauer spectroscopy, x-ray diffraction, carbon content determination, and reaction kinetic measurements. J Phys Chem 84:3363–3370

    Article  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  • Pravica M, Galley M, Kim E, Weck P, Liu Z (2010) A far- and mid-infrared study of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) under high pressure. Chem Phys Lett 500:28–34

    Article  CAS  Google Scholar 

  • Sharia O, Kuklja MM (2011) Modeling thermal decomposition mechanisms in gaseous and crystalline molecular materials: application to β-HMX. J Phys Chem B 115:12677–12686

    Article  CAS  Google Scholar 

  • Sharia O, Kuklja MM (2012a) Rapid materials degradation induced by surfaces and voids:ab initiomodeling of β-octatetramethylene tetranitramine. J Am Chem Soc 134:11815–11820

    Article  CAS  Google Scholar 

  • Sharia O, Kuklja MM (2012b) Surface-enhanced decomposition kinetics of molecular materials illustrated with cyclotetramethylene-tetranitramine. J Phys Chem C 116:11077–11081

    Article  CAS  Google Scholar 

  • Smilowitz L, Henson BF, Asay BW, Dickson PM (2002) The β–δ phase transition in the energetic nitramine-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: kinetics. J Chem Phys 117:3789–3798

    Article  CAS  Google Scholar 

  • Smilowitz L, Henson BF, Greenfield M, Sas A, Asay BW, Dickson PM (2004) On the nucleation mechanism of the β-δ phase transition in the energetic nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. J Chem Phys 121:5550–5552

    Article  CAS  Google Scholar 

  • Stevens LL, Eckhardt CJ (2005) The elastic constants and related properties of β-HMX determined by Brillouin scattering. J Chem Phys 122:174701

    Article  CAS  Google Scholar 

  • Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18:015012

    Article  Google Scholar 

  • Su R, Long Y, Jiang SL, He J, Chen J (2012) Elastic properties of β-HMX under extra pressure: a first principles study. Acta Phys Sin 61:206201–206201

    Google Scholar 

  • Tappan AS, Renlund AM, Gieske JH, Miller JC (1999) Office of Scientific & Technical Information Technical Reports

  • Weeks BL, Ruddle CM, Zaug JM, Cook DJ (2002) Monitoring high-temperature solid–solid phase transitions of HMX with atomic force microscopy. Ultramicroscopy 93:19–23

    Article  CAS  Google Scholar 

  • Weese RK, Maienschein JL, Perrino CT (2003) Kinetics of the β → δ solid–solid phase transition of HMX, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. Thermochim Acta 401:1–7

    Article  CAS  Google Scholar 

  • Wemhoff AP, Burnham AK, Nichols AL (2007) Application of global kinetic models to HMX β−δ transition and cookoff processes. J Phys Chem A 111:1575–1584

    Article  CAS  Google Scholar 

  • Wu Z, Kalia RK, Nakano A, Vashishta P (2011) Vibrational and thermodynamic properties of β-HMX: A first-principles investigation. J Chem Phys 134:204509

    Article  CAS  Google Scholar 

  • Wu Q, Xiong G, Zhu W, Xiao H (2015) How does low temperature coupled with different pressures affect initiation mechanisms and subsequent decompositions in nitramine explosive HMX? Phys Chem Chem Phys 17:22823–22831

    Article  CAS  Google Scholar 

  • Xiang D, Zhu W (2018) Adiabatic and constant volume decomposition process of condensed phase δ-1,3,5,7-tetranitro-1,3,5,7-tetrazocane at high temperatures: quantum molecular dynamics simulations. J Mol Graph Model 85:68–74

    Article  CAS  Google Scholar 

  • Xue C, Sun J, Kang B, Liu Y, Liu X, Song G, Xue Q (2010) The β‐δ-Phase Transition and Thermal Expansion of Octahydro‐1,3,5,7-Tetranitro‐1,3,5,7‐Tetrazocine. Propellants Explos Pyrotech 35:333–338

    Article  CAS  Google Scholar 

  • Ye CC, An Q, Zhang WQ, Goddard WA (2019) Initial decomposition of HMX energetic material from quantum molecular dynamics and the molecular structure transition of β-HMX to δ-HMX. J Phys Chem C 123:9231–9236

    Article  CAS  Google Scholar 

  • Yoo CS, Cynn H (1999) Equation of state, phase transition, decomposition of β-HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) at high pressures. J Chem Phys 111:10229–10235

    Article  CAS  Google Scholar 

  • Zaug JM, Farber DL, Saw CK, Weeks BL (2002) Kinetics of solid phase reactions at high pressure and temperature United States. Lawrence Livermore National Laboratory, California

  • Zerilli FJ, Kuklja MM (2010) Ab initio equation of state of the organic molecular crystal: β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. J Phys Chem A 114:5372–5376

    Article  CAS  Google Scholar 

  • Zhao XS, Hintsa EJ, Lee YT (1988) Infrared multiphoton dissociation of RDX in a molecular beam. J Chem Phys 88:801–810

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant No. 21773119) and Science Challenging Program (No. TZ2016001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Zhu, W. β → δ phase transition and initial decomposition of HMX nanoparticle from reactive molecular dynamics simulations. J Nanopart Res 22, 362 (2020). https://doi.org/10.1007/s11051-020-05099-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-05099-9

Keywords

Navigation