Skip to main content

Advertisement

Log in

Production and characteristics of nanocellulose obtained with using of ionic liquid and ultrasonication

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The dissolving of cellulose under harsh and environmentally unfavorable circumstances is the basis of traditional chemical methods for nanocellulose (NC) or derivatization. Due to the limitations of present methods for dissolving and processing NC, more efficient and ecologically acceptable solvents are required. Because of their excellent thermal and chemical stability, non-flammability, and miscibility with many other solvent systems, ionic liquids (ILs) have emerged as useful and environmentally friendly solvents. Meanwhile, another procedure for producing NC with homogeneous and extremely crystalline characteristics is ultra-sonification. Ultrasound energy is delivered to cellulose chains during ultrasonication by a process known as cavitation, which refers to the development, growth, and collapse of cavities in a liquid medium. Cavitation provides 10–100 kJ/mol of energy in this so-called sonochemistry, which is within the hydrogen bond energy scale. As a result, both catalytic IL treatments and ultrasonication influence the progressive disintegration of NC synthesis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Available upon request.

The work described has not been published previously and that it is not under consideration for publication elsewhere. This publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. We also declare that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, without the written consent of the Publisher. There is no conflict of interest for this paper.

References

  1. Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of NC: a review of available data and industrial applications. J Biomater Nanobiotechnol 4(2):1–24

    Article  CAS  Google Scholar 

  2. Tang Y, Yang S, Zhang N, Zhang J (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21:335–346

    Article  CAS  Google Scholar 

  3. Ioelovich M (2012) Optimal conditions for isolation of nanocrystalline cellulose particles. Nanosci Nanotechnol 2:9–13

    Article  CAS  Google Scholar 

  4. Brinchi L, Cotana F, Fortunati E, Kenny J (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94:154–169

    Article  CAS  Google Scholar 

  5. Khalil HA, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohyd Polym 99:649–665

    Article  CAS  Google Scholar 

  6. Torres FG, Commeaux S, Troncoso OP (2012) Biocompatibility of bacterial cellulose based biomaterials. J Funct Biomater 3:864–878

    Article  CAS  Google Scholar 

  7. Peng BL, Dhar N, Liu H, Tam K (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206

    Article  CAS  Google Scholar 

  8. Wu Q, Meng Y, Wang S, Li Y, Fu S, Ma L, Harper D (2014) Rheological behavior of cellulose nanocrystal suspension: influence of concentration and aspect ratio. J Appl Polym Sci 131(15):1–12

    Google Scholar 

  9. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  10. De Souza Lima MM, Wong JT, Paillet M, Borsali R, Pecora R (2003) Translational and rotational dynamics of rodlike cellulose whiskers. Langmuir 19:24–29

    Article  CAS  Google Scholar 

  11. Kimura F, Kimura T, Tamura M, Hirai A, Ikuno M, Horii F (2005) Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir 21:2034–2037

    Article  CAS  Google Scholar 

  12. Revol J-F (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohyd Polym 2:123–134

    Article  CAS  Google Scholar 

  13. Pranger L, Tannenbaum R (2008) Biobased nanocomposites prepared by in situ polymerization of furfuryl alcohol with cellulose whiskers or montmorillonite clay. Macromolecules 41:8682–8687

    Article  CAS  Google Scholar 

  14. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65

    Article  CAS  Google Scholar 

  15. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054

    Article  CAS  Google Scholar 

  16. Dufresne A, Cavaillé JY, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Polym Compos 18:198–210

    Article  CAS  Google Scholar 

  17. Lu P, Hsieh Y-L (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohyd Polym 87:564–573

    Article  CAS  Google Scholar 

  18. Holilah H, Bahruji H, Ediati R, Asranudin A, Jalil AA, Piluharto B, Nugraha RE, Prasetyoko D (2022) Uniform rod and spherical nanocrystalline celluloses from hydrolysis of industrial pepper waste (Piper nigrum L.) using organic acid and inorganic acid. Int J Biol Macromol 204:593–605

    Article  CAS  Google Scholar 

  19. Ilyas R, Sapuan S, Ishak M (2018) Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohyd Polym 181:1038–1051

    Article  CAS  Google Scholar 

  20. Boschetti WTN, Carvalho AMML, de Càssia Oliveira Carneiro A, Vidaurre GB, Gomes FJB, Soratto DN (2021) Effect of mechanical treatment of eucalyptus pulp on the production of nanocrystalline and microcrystalline cellulose. Sustainability 13:5888

    Article  CAS  Google Scholar 

  21. Nuruddin A, Habibullah A, Adipratama MJ, Purwasasmita BS (2021) Synthesis of barium hexaferrite templated by nanocrystalline cellulose extracted from luffa acutangula fiber. Mater Res Express 8:066104

    Article  CAS  Google Scholar 

  22. Fortunati E, Puglia D, Monti M, Peponi L, Santulli C, Kenny J, Torre L (2013) Extraction of cellulose nanocrystals from Phormium tenax fibres. J Polym Environ 21:319–328

    Article  CAS  Google Scholar 

  23. Singh S, Varanasi P, Singh P, Adams PD, Auer M, Simmons BA (2013) Understanding the impact of ILs pretreatment on cellulose and lignin via thermochemical analysis. Biomass Bioenerg 54:276–283

    Article  CAS  Google Scholar 

  24. Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  CAS  Google Scholar 

  25. Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohyd Polym 76:94–99

    Article  CAS  Google Scholar 

  26. Johar N, Ahmad I, Dufresne A (2012) Ind Crops and Prod 37(1):93–99

    Article  CAS  Google Scholar 

  27. Morais JPS, de Freitas Rosa M, Dias Nascimento L, Magalhães do Nascimento D, Ribeiro Cassales A (2013) Extraction and characterization of NC structures from raw cotton linter. Carbohydr Polym 91:229–235

  28. Lamaming J, Hashim R, Leh CP, Sulaiman O (2017) Properties of cellulose nanocrystals from oil palm trunk isolated by total chlorine free method. Carbohyd Polym 156:409–416

    Article  CAS  Google Scholar 

  29. Jiang F, Hsieh Y-L (2013) Chemically and mechanically isolated NC and their self-assembled structures. Carbohyd Polym 95:32–40

    Article  CAS  Google Scholar 

  30. Mishra SP, Manent A-S, Chabot B, Daneault C (2012) Production of NC from native cellulose–various options utilizing ultrasound. BioResources 7:0422–0436

    CAS  Google Scholar 

  31. Xie J, Hse C-Y, Cornelis F, Hu T, Qi J, Shupe TF (2016) Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication. Carbohyd Polym 151:725–734

    Article  CAS  Google Scholar 

  32. Liu C-F, Ren J-L, Xu F, Liu J-J, Sun J-X, Sun R-C (2006) Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse. J Agric Food Chem 54:5742–5748

    Article  CAS  Google Scholar 

  33. Hachaichi A, Kouini B, Kian LK, Asim M, Fouad H, Jawaid M, Sain M (2021) Nanocrystalline cellulose from microcrystalline cellulose of date palm fibers as a promising candidate for bio-nanocomposites: isolation and characterization. Materials 14:5313

    Article  CAS  Google Scholar 

  34. Doan TKQ, Chiang KY (2022) Characteristics and kinetics study of spherical cellulose nanocrystal extracted from cotton cloth waste by acid hydrolysis. Sustain Environ Res 32:1–14

    Article  CAS  Google Scholar 

  35. Ilyas R, Sapuan S, Atikah M, Asyraf M, Rafiqah SA, Aisyah H, Nurazzi NM, Norrrahim M (2021) Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr). Text Res J 91:152–167

    Article  CAS  Google Scholar 

  36. Tingaut P, Zimmermann T, Sèbe G (2012) Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J Mater Chem 22:20105–20111

    Article  CAS  Google Scholar 

  37. Zhang J, Wang Y, Zhang L, Zhang R, Liu G, Cheng G (2014) Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ILs pretreatment by XRD. Biores Technol 151:402–405

    Article  CAS  Google Scholar 

  38. Rahman MBA, Ishak ZI, Abdullah DK, Aziz AA, Basri M, Salleh AB (2012) Swelling and dissolution of oil palm biomass in ILss. J Oil Palm Res 24:1267–1276

    Google Scholar 

  39. Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Room temperature ILss (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147:13–21

    Article  CAS  Google Scholar 

  40. Zhao H, Jones CL, Baker GA, Xia S, Olubajo O, Person VN (2009) Regenerating cellulose from ILss for an accelerated enzymatic hydrolysis. J Biotechnol 139:47–54

    Article  CAS  Google Scholar 

  41. Jurado E, Camacho F, Luzon G, Vicaria J (2006) Influence of the hollow-fibre membrane on the stability of β-galactosidase and on lactose hydrolysis: kinetic models including adsorption of the enzyme onto the membrane. Enzyme Microb Technol 39:1008–1015

    Article  CAS  Google Scholar 

  42. Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ILss dissolving (ligno-) cellulose. Biores Technol 100:2580–2587

    Article  CAS  Google Scholar 

  43. Welton T (2004) ILss in catalysis. Coord Chem Rev 248:2459–2477

    Article  CAS  Google Scholar 

  44. Rinaldi R, Schüth F (2009) Design of solid catalysts for the conversion of biomass. Energy Environ Sci 2:610–626

    Article  CAS  Google Scholar 

  45. Zhang Q, Zhang S, Deng Y (2011) Recent advances in ILs catalysis. Green Chem 13:2619–2637

    Article  CAS  Google Scholar 

  46. Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ILs: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    Article  CAS  Google Scholar 

  47. Feng L, Chen Z-L (2008) Research progress on dissolution and functional modification of cellulose in ILss. J Mol Liq 142:1–5

    Article  CAS  Google Scholar 

  48. Shi J, Gao H, Xia Y, Li W, Wang H, Zheng C (2013) Efficient process for the direct transformation of cellulose and carbohydrates to 5-(hydroxymenthyl) furfural with dual-core sulfonic acid ILss and co-catalysts. RSC Adv 3:7782–7790

    Article  CAS  Google Scholar 

  49. Olivier-Bourbigou H, Magna L, Morvan D (2010) ILss and catalysis: recent progress from knowledge to applications. Appl Catal A 373:1–56

    Article  CAS  Google Scholar 

  50. Cheng J-Y, Chu Y-H (2006) 1-Butyl-2, 3-trimethyleneimidazolium bis (trifluoromethylsulfonyl) imide ([b-3C-im][NTf2]): a new, stable ILs. Tetrahedron Lett 47:1575–1579

    Article  CAS  Google Scholar 

  51. Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1, 3-dialkylimidazolium formates. Biomacromol 7:3295–3297

    Article  CAS  Google Scholar 

  52. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ILss. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  53. Montalbo-Lomboy M, Grewell D (2015) Rapid dissolution of switchgrass in 1-butyl-3-methylimidazolium chloride by ultrasonication. Ultrason Sonochem 22:588–599

    Article  CAS  Google Scholar 

  54. Gupta KM, Jiang J (2015) Cellulose dissolution and regeneration in ILss: a computational perspective. Chem Eng Sci 121:180–189

    Article  CAS  Google Scholar 

  55. Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ILss. Cellulose 15:59–66

    Article  CAS  Google Scholar 

  56. Zhao H, Baker GA, Song Z, Olubajo O, Crittle T, Peters D (2008) Designing enzyme-compatible ILss that can dissolve carbohydrates. Green Chem 10:696–705

    Article  CAS  Google Scholar 

  57. Heinze T, Schwikal K, Barthel S (2005) ILss as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525

    Article  CAS  Google Scholar 

  58. Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ILss. Green Chem 11:417–424

    Article  CAS  Google Scholar 

  59. Kosan B, Michels C, Meister F (2007) Dissolution and forming of cellulose with ILss. Cellulose 15:59–66

    Article  CAS  Google Scholar 

  60. Wendler F, Todi L-N, Meister F (2012) Thermostability of imidazolium ILss as direct solvents for cellulose. Thermochim Acta 528:76–84

    Article  CAS  Google Scholar 

  61. Liu Y, Xiao W, Xia S, Ma P (2013) SO3H-functionalized acidic ILss as catalysts for the hydrolysis of cellulose. Carbohyd Polym 92:218–222

    Article  CAS  Google Scholar 

  62. Brehm M, Radicke J, Pulst M, Shaabani F, Sebastiani D, Kressler J (2020) Dissolving cellulose in 1, 2, 3-triazolium-and imidazolium-based ILss with aromatic anions. Molecules 25:3539

    Article  CAS  Google Scholar 

  63. Ma K, Jin X, Zheng M, Gao H (2021) Dissolution and functionalization of celluloses using 1, 2, 3-triazolium ILs. Carbohydr Polym Techno Appl 2:100109

    CAS  Google Scholar 

  64. Xu A, Zhang Y, Zhao Y, Wang J (2013) Cellulose dissolution at ambient temperature: Role of preferential solvation of cations of ILss by a cosolvent. Carbohyd Polym 92:540–544

    Article  CAS  Google Scholar 

  65. Protz R, Lehmann A, Bohrisch J, Ganster J, Fink H-P (2021) Solubility and spinnability of cellulose-lignin blends in specific ILss. Carbohyd Polym Technol Appl 2:100041

    CAS  Google Scholar 

  66. Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ILs 1-n-butyl-3-methylimidazolium chloride: a 13 C and 35/37 Cl NMR relaxation study on model systems. Chem Comm 12:1271–1273

    Article  CAS  Google Scholar 

  67. Tan HT, Lee KT (2012) Understanding the impact of ILs pretreatment on biomass and enzymatic hydrolysis. Chem Eng J 183:448–458

    Article  CAS  Google Scholar 

  68. Ohno H, Fukaya Y (2009) Task specific ILss for cellulose technology. Chem Lett 38:2–7

    Article  CAS  Google Scholar 

  69. Guo H, Qi X, Li L, Smith RL Jr (2012) Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ILs. Biores Technol 116:355–359

    Article  CAS  Google Scholar 

  70. Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ILss and its application: a mini-review. Green Chem 8:325–327

    Article  CAS  Google Scholar 

  71. Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) ILs-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  CAS  Google Scholar 

  72. Xin D, Yang M, Zhang Y, Hou X, Wu J, Fan X, Wang J, Zhang J (2016) Physicochemical characterization and enzymatic digestibility of Chinese pennisetum pretreated with 1-ethyl-3-methylimidazolium acetate at moderate temperatures. Renewable Energy 91:409–416

    Article  CAS  Google Scholar 

  73. Bian J, Peng F, Peng X-P, Xiao X, Peng P, Xu F, Sun R-C (2014) Effect of [Emim] Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carbohyd Polym 100:211–217

    Article  CAS  Google Scholar 

  74. Man Z, Muhammad N, Sarwono A, Bustam MA, Vignesh Kumar M, Rafiq S (2011) Preparation of cellulose nanocrystals using an ILs. J Polym Environ 19:726–731

    Article  CAS  Google Scholar 

  75. Mao J, Heck B, Reiter G, Laborie M-P (2015) Cellulose nanocrystals’ production in near theoretical yields by 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim] HSO4)–mediated hydrolysis. Carbohyd Polym 117:443–451

    Article  CAS  Google Scholar 

  76. Tan XY, Abd Hamid SB, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ILs solvolysis. Biomass Bioenergy 81:584–591

    Article  CAS  Google Scholar 

  77. Lazko J, Sénéchal T, Landercy N, Dangreau L, Raquez J-M, Dubois P (2014) Well defined thermostable cellulose nanocrystals via two-step ILs swelling-hydrolysis extraction. Cellulose 21:4195–4207

    Article  CAS  Google Scholar 

  78. Haron GAS, Mahmood H, Noh MH, Alam MZ, Moniruzzaman M (2021) ILss as a sustainable platform for NC processing from bioresources: overview and current status. ACS Sustain Chem Eng 9:1008–1034

    Article  CAS  Google Scholar 

  79. Schlufter K, Schmauder HP, Dorn S, Heinze T (2006) Efficient homogeneous chemical modification of bacterial cellulose in the ILs 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Commun 27:1670–1676

    Article  CAS  Google Scholar 

  80. Hernoux-Villière A, Lévêque J-M, Kärkkäinen J, Papaiconomou N, Lajunen M, Lassi U (2014) Task-specific ILs for the depolymerisation of starch-based industrial waste into high reducing sugars. Catal Today 223:11–17

    Article  CAS  Google Scholar 

  81. Dharaskar SA, Varma MN, Shende DZ, Yoo CK, Wasewar KL (2013) Synthesis, characterization and application of 1-butyl-3 methylimidazolium chloride as green material for extractive desulfurization of liquid fuel. Sci World J 2013:1–13

    Article  CAS  Google Scholar 

  82. Yassin FA, El Kady FY, Ahmed HS, Mohamed LK, Shaban SA, Elfadaly AK (2015) Highly effective ILss for biodiesel production from waste vegetable oils. Egypt J Pet 24:103–111

    Article  Google Scholar 

  83. Onkarappa H, Prakash G, Pujar G, Kumar CR, Latha M, Betageri VS (2020) Synthesis and characterization of NC using renewable resources through ILs medium. Adv Natural Sci Nanosci Nanotechnol 11:035001

    Article  CAS  Google Scholar 

  84. Beyki MH, Bayat M, Shemirani F (2016) Fabrication of core–shell structured magnetic NC base polymeric ILs for effective biosorption of Congo red dye. Biores Technol 218:326–334

    Article  CAS  Google Scholar 

  85. Babicka M, Woźniak M, Dwiecki K, Borysiak S, Ratajczak I (2020) Preparation of NC using ILss: 1-propyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium chloride. Molecules 25:1544

    Article  CAS  Google Scholar 

  86. Onkarappa H, Prakash G, Pujar G, Kumar CR, Latha M, Betageri VS (2020) Hevea brasiliensis mediated synthesis of NC: effect of preparation methods on morphology and properties. Int J Biol Macromol 160:1021–1028

    Article  CAS  Google Scholar 

  87. Samsudin NA, Low FW, Yusoff Y, Shakeri M, Tan XY, Lai CW, Asim N, Oon CS, Newaz KS, Tiong SK (2020) Effect of temperature on synthesis of cellulose nanoparticles via ILs hydrolysis process. J Mol Liq 308:113030

    Article  CAS  Google Scholar 

  88. Ferreira PF, Pereira AL, Rosa MF, de Santiago-Aguiar RS (2022) Lignin-rich cellulose nanocrystals from coir fiber treated with ILss: preparation and evaluation as pickering emulsifier. Ind Crops Prod 186:115119

    Article  CAS  Google Scholar 

  89. Reyes G, Aguayo MG, Fernández Pérez A, Pääkkönen T, Gacitúa W, Rojas OJ (2019) Dissolution and hydrolysis of bleached kraft pulp using ILss. Polymers 11:673

    Article  CAS  Google Scholar 

  90. Morales-delaRosa S, Campos-Martin JM, Fierro JL (2018) Chemical hydrolysis of cellulose into fermentable sugars through ILss and antisolvent pretreatments using heterogeneous catalysts. Catal Today 302:87–93

    Article  CAS  Google Scholar 

  91. Kassaye S, Pant KK, Jain S (2017) Hydrolysis of cellulosic bamboo biomass into reducing sugars via a combined alkaline solution and ILs pretreament steps. Renew Energy 104:177–184

    Article  CAS  Google Scholar 

  92. Haafiz MM, Hassan A, Zakaria Z, Inuwa I (2014) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohyd Polym 103:119–125

    Article  CAS  Google Scholar 

  93. Phanthong P, Karnjanakom S, Reubroycharoen P, Hao X, Abudula A, Guan G (2017) A facile one-step way for extraction of NC with high yield by ball milling with ILs. Cellulose 24:2083–2093

    Article  CAS  Google Scholar 

  94. Huang J, Lin C, Chen R, Xiong W, Wen X, Luo X (2020) ILs-assisted synthesis of NC adsorbent and its adsorption properties. Chin J Mater Res 34:674–682

    Google Scholar 

  95. Babicka M, Woźniak M, Szentner K, Bartkowiak M, Peplińska B, Dwiecki K, Borysiak S, Ratajczak I (2021) NC production using ILss with enzymatic pretreatment. Materials 14:3264

    Article  CAS  Google Scholar 

  96. Jordan JH, Easson MW, Condon BD (2020) Cellulose hydrolysis using ILss and inorganic acids under dilute conditions: morphological comparison of NC. RSC Adv 10:39413–39424

    Article  CAS  Google Scholar 

  97. Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, Part 1: Process optimization. J Appl Polym Sci 113:1270–1275

    Article  CAS  Google Scholar 

  98. Yang C-Y, Fang TJ (2014) Combination of ultrasonic irradiation with ILs pretreatment for enzymatic hydrolysis of rice straw. Biores Technol 164:198–202

    Article  CAS  Google Scholar 

  99. Li W, Zhao X, Liu S (2013) Preparation of entangled NC fibers from APMP and its magnetic functional property as matrix. Carbohyd Polym 94:278–285

    Article  CAS  Google Scholar 

  100. Wu J, Feng Y, Zhang L, Wu W (2020) NC-based Surface-enhanced Raman spectroscopy sensor for highly sensitive detection of TNT. Carbohyd Polym 248:116766

    Article  CAS  Google Scholar 

  101. Abral H, Lawrensius V, Handayani D, Sugiarti E (2018) Preparation of nano-sized particles from bacterial cellulose using ultrasonication and their characterization. Carbohyd Polym 191:161–167

    Article  CAS  Google Scholar 

  102. Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohyd Polym 83:1804–1811

    Article  CAS  Google Scholar 

  103. Tang L, Huang B, Lu Q, Wang S, Ou W, Lin W, Chen X (2013) Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid. Biores Technol 127:100–105

    Article  CAS  Google Scholar 

  104. Li W, Zhao X, Huang Z, Liu S (2013) NC fibrils isolated from BHKP using ultrasonication and their reinforcing properties in transparent poly (vinyl alcohol) films. J Polym Res 20:1–7

    Google Scholar 

  105. Beck S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromol 12:167–172

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the SATU Joint Research Scheme Grant no. ST008-2018 (Title: Development on NC Conjugated Gold Drug Delivery System for Cancer Treatment Application).

Funding

The research has been supported by SATU Joint Research Scheme Grant no. ST008-2018 (Title: Development on NC Conjugated Gold Drug Delivery System for Cancer Treatment Application).

Author information

Authors and Affiliations

Authors

Contributions

Nurul Atikah Mohd Ishak:

• Ideas; formulation or evolution of overarching research goals and aims

• Verification, whether as a part of the activity or separate, of the overall replication/reproducibility of results/experiments and other research outputs

Fatimah Zahara Abdullah

• Verification, whether as a part of the activity or separate, of the overall replication/reproducibility of results/experiments and other research outputs

Nurhidayatullaili Muhd Julkapli.

• Responsible for ensuring that the descriptions are accurate and agreed by all author

• Management and coordination responsibility for the research activity planning and execution

Corresponding author

Correspondence to Nurhidayatullaili Muhd Julkapli.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Usage of ILs catalyst produced NCC with high crystallinity and surface area.

• Ultrasonication produced NCC in high yield, less agglomeration, and uniform size.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd Ishak, N.A., Abdullah, F.Z. & Muhd Julkapli, N. Production and characteristics of nanocellulose obtained with using of ionic liquid and ultrasonication. J Nanopart Res 24, 171 (2022). https://doi.org/10.1007/s11051-022-05549-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05549-6

Keywords

Navigation