Skip to main content
Log in

Combined Geophysical–Geological Investigation for 3D Geological Modeling: Case of the Jeffara Reservoir Systems, Medenine Basin, SE Tunisia

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

This work presents a comprehensive study based on geophysical and geological data to improve the characterization of regional multilayered reservoir systems in a complex geological setting. A combined approach, involving (a) data integration, (b) joint seismic-geological investigations, (c) mapping of reservoir surfaces and (d) 3D geological modeling, is proposed to characterize the “Jeffara of Medenine Basin” reservoir systems and to enhance the understanding of their functioning. The 3D geological modeling was performed using a 3D interpolation procedure based on potential field theory and integrating both observed data and knowledge-driven understanding. It was implemented using co-kriging techniques, involving two main variables: the “geological contact” and the “orientation data.” The interpolation was constrained by geological knowledge and hypotheses inferred through the stratigraphic pattern of the reservoir formations to be modeled and the faults affecting their continuity. A reliable 3D geological modeling was constructed, describing nine regional reservoir formations and associated structural features (folds and crosscutting faults). A comprehensive analysis of the outputs of the 3D geological model combined with a careful correlation of the potentiometric gradient/lithologic properties insured a better description of the reservoirs compartmentalization and connectivity and helped to construct the conceptual model of the fluid flow path at regional and local scales. All modeling results provide a direct foundation for subsequent numerical flow simulation and hydrodynamic modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Ali, A. M., Radwan, A. E., Abd El-Gawad, E. A., & Abdel-Latief, A. S. A. (2021). 3D integrated structural, facies and petrophysical static modeling approach for complex sandstone reservoirs: A case study from the coniacian-santonian matulla formation, July Oilfield, Gulf of Suez, Egypt. Natural Resources Research. https://doi.org/10.1007/s11053-021-09980-9

    Article  Google Scholar 

  • Amamria, S., Bensalem, M. S., Bensalem, H., & Ghanmi, M. (2021). Syn-sedimentary tectonic control of the Cretaceous deposits in the Chotts basin, southern Tunisia: Geodynamic significance. Journal of African Earth Sciences, 184, 104355.

    Article  Google Scholar 

  • ArcGIS (2012). Release 10.1, Environmental Systems Research Institute (ESRI), Redlands, CA. https://www.arcgis.com/index.html

  • Ben Baccar, B. (1982). Contribution à L’étude Hydrogéologique de L’aquifère Multicouche de Gabès Sud. Ph.D. Thesis, Université de Paris Sud, Orsay, France.

  • Ben Ferjani, A., Burollet, P. F., & Mejri, F. (1990). Petroleum geology of Tunisia. Memoire ETAP N°1.Tunis, 194.

  • Bishop, W. F. (1975). Geology of Tunisia and adjacent parts of Algeria and Libya. Association of Petroleum Geologists Bulletin, 59(3), 413–450.

    Google Scholar 

  • Busson, G. (1967). Le Mésozoïque saharien 1ère partie : l’extrême-Sud tunisien. Edition C.N.R.S., France, Service Géologique, 8, 194.

  • Calcagno, P., Chilès, J. P., Courrioux, G., & Guillen, A. (2008). Geological modelling from field data and geological knowledge Part I. Modelling method coupling 3D potential-field interpolation and geological rules. Physics of the Earth and Planetary Interiors, 171(1–4), 147–157.

    Article  Google Scholar 

  • Castany, G. (1954). L’accident Sud tunisien, son âge et ses relations avec l’accident Sud atlasique d’Algérie. C. R. Acad. Sci. Paris, 238(8), 916–918.

    Google Scholar 

  • Caumon, G., Jessell, M., de Kemp, E., Nemeth, B., Peron, G., & Schetselaar, E. (2016). Introduction to special section: Building complex and realistic geological models from sparse data. Interpretation, 4(3), 1A-Y1.

    Article  Google Scholar 

  • Chihi, H., Bedir, M., & Belayouni, H. (2013). Variogram identification aided by a structural framework for improved geometric modeling of faulted reservoirs: Jeffara basin Southeastern Tunisia. Natural Resources Research, 22(2), 139–161.

    Article  Google Scholar 

  • Chihi, H., & de Marsily, G. (2009). Simulating non-stationary seismic facies distribution in a prograding shelf environment. Gas Science and Technology - Revue d’IFP Energies nouvelles, 64(4), 451–467.

    Article  Google Scholar 

  • Chihi, H., de Marsily, G., Belayouni, H., & Yahyaoui, H. (2015). Relationship between tectonic structures and hydrogeochemical compartmentalization in aquifers: Example of the “Jeffara of Medenine” system, south–east Tunisia. Journal of Hydrology: Regional Studies, 4(Part B), 410–430.

    Google Scholar 

  • Chihi, H., de Marsily, G., Bourges, M., & Sbeaa, M. (2016). A constrained geostatistical approach for efficient multilevel aquifer system characterization. Journal of Water Resource and Hydraulic Engineering, 5(3), 80–95.

    Article  Google Scholar 

  • Chihi, H., Jeannée, N., Yahayoui, H., Belayouni, H., & Bedir, M. (2014). Geostatistical optimization of water reservoir characterization case of the Jeffra de Medenine aquifer system (SE Tunisia). Desalination and Water Treatment, 52(10–12), 2009–1016.

    Article  Google Scholar 

  • Chihi, H., Tesson, M., Galli, A., De Marsily, G., & Ravenne, C. (2007). Geostatistical modelling (3D) of the stratigraphic unit surfaces of the Gulf of Lion western margin (Mediterranean Sea) based on seismic profiles. Bulletin de la Sociéte Géologique de France, 178, 25–38.

    Article  Google Scholar 

  • Chilès, J. P., Aug, C., Guillen, A., & Lees, T. (2004). Modeling the Geometry of Geological Units and its Uncertainty in 3D From Structural Data: The Potential-Field Method. Proceedings of “Orebody Modeling and Strategic Mine Planning”, Perth, WA, pp. 22–24.

  • de Marsily, G., Delay, F., Gonçalvès, J., Renard, P., Teles, V., & Violette, S. (2005). Dealing with spatial heterogeneity. Hydrogeology Journal, 13(1), 161–183.

    Article  Google Scholar 

  • Dkhaili, N., Bey, S., El Abed, M., Gasmi, M., & Inoubli, M. H. (2015). Integrated geophysical and geological study and petroleum appraisal of Cretaceous plays in the Western Gulf of Gabes, Tunisia. Tectonophysics, 658, 1–13.

    Article  Google Scholar 

  • Fournillon, A. (2012). Modélisation géologique 3D et hydrodynamique appliquées aux réservoirs carbonatés karstiques : caractérisation des ressources en eau souterraine de l'Unité du Beausset (Var et Bouches-du-Rhône, SE France). Interfaces continentales, environnement. Ph.D. Thesis, Aix-Marseille Université.

  • Frey, M., Weinert, S., Bär, K., van der Vaart, J., Dezayes, C., Calcagno, P., & Sassa, I. (2021). Integrated 3D geological modelling of the northern Upper Rhine Graben by joint inversion of gravimetry and magnetic data. Tectonophysics, 813, 228927.

    Article  Google Scholar 

  • Gabtni, H., Alyahyaoui, S., Jallouli, C., Hasni, W., & Mickus, K. L. (2012). Gravity and seismic reflection imaging of a deep aquifer in an arid region: Case history from the Jeffara basin, southeastern Tunisia. Journal of African Earth Sciences, 66, 85–97.

    Article  Google Scholar 

  • Gentilhomme, T. (2014). Intégration multi-échelles des données de réservoir et quantication des incertitudes. Ph.D. Thesis, ENSG - Université de Lorraine TSA 70605, 54518 Vandoeuvre-lès-Nancy cedex - FRANCE.

  • Gibson, H., Bonet, C., Patterson, R., Seikel, R., & Hore, S. (2010). 3D Geological model building, and 3D temperature and heat flow calculation for the northern Perth Basin, A report prepared for Department of Mines and Petroleum by GeoIntrepid. Geological Survey, 6, 74.

    Google Scholar 

  • Granjeon, D., & Joseph, P. (1999). Concepts and applications of a 3-D Multiple lithology, diffusive model in stratigraphic modeling. Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations. In J. W. Harbaugh, W. L. Watney, E. C. Rankey, R. Slingerland, R. H. Goldstein, & E. K. Franseen (Eds.), Numerical Experiments in Stratigraphy: Recent Advances in Stratigraphic and Sedimentologic Computer Simulations (SEPM special publications, 62). SEPM Society for Sedimentary Geology.

  • Hammami, M. A., Chihi, H., Ben Mammou, A., & Yahyaoui, H. (2018a). Aquifer structure identification through geostatistical integration of geological parameters: Case of the Triassic sandstone aquifer system (SE Tunisia). Arabian Journal of Geosciences, 11(11), 248.

    Article  Google Scholar 

  • Hammami, M. A., Chihi, H., & De Marsily, G. (2018). Building Constrained (3D) Geostatistical Models Case of the Triassic Sandstone Aquifer System (SE Tunisia). In A. Kallel, M. Ksibi, H. B. Dhia, & N. Khélifi (Eds.), Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions: Proceedings of Euro-Mediterranean Conference for Environmental Integration (EMCEI-1), Tunisia 2017. Cham: Springer. https://doi.org/10.1007/978-3-319-70548-4_192

    Chapter  Google Scholar 

  • Haque, A. E., Qadri, S. M. T., Bhuiyan, M. A. H., Navid, M., Nabawy, B. S., Hakimi, M. H., & Abd-El-Aal, A. K. (2022). Integrated wireline log and seismic attribute analysis for the reservoir evaluation: A case study of the Mount Messenger Formation in Kaimiro Field, Taranaki Basin, New Zealand. Journal of Natural Gas Science and Engineering, 99, 104452.

    Article  Google Scholar 

  • Intrepid_Geophysics_GeoModeller 3D modelling (2018). Melbourne, Australia. https://www.intrepid-geophysics.com/product/geomodeller/.

  • ISATIS (2020). Geovariances Technical references Fontainebleau France.

  • Islam, M. A., Yunsi, M., Qadri, S. M. T., Shalaby, M. R., & Haque, A. K. M. E. (2020). Three-dimensional structural and petrophysical modeling for reservoir characterization of the mangahewa formation, pohokura gas-condensate field, Taranaki Basin, New Zealand. Natural Resources Research, 30, 371–394.

    Article  Google Scholar 

  • Khouni, R., Arfaoui, M. S., Dridi, S., & Zargouni, F. (2018). Polyphasic evolution of the Jeffara basin in southern Tunisia, influence of halokinesis on the passive margin structuration in the Mesozoic and the Cenozoic. Arabian Journal of Geosciences, 11(4), 68.

    Article  Google Scholar 

  • SMT Kingdom (2015). IHS Kingdom advanced, London. http://www.kingdom.ihs.com/.

  • Lajaunie, C., Courrioux, G., & Manual, L. (1997). Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation. Mathematical Geology, 18, 571–584.

    Article  Google Scholar 

  • Lorensen, W. E., & Cline, H. E. (1987). Marching cubes: A high resolution 3D surface construction algorithm. In Proceedings of the “14th Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH ’87”. doi:https://doi.org/10.1145/37401.37422.

  • Mariethoz, G., & Lefebvre, S. (2014). Bridges between multiple-point geostatistics and texture synthesis: Review and guidelines for future research. Computers and Geosciences, 66, 60–80.

    Article  Google Scholar 

  • McInerney, P., & Guillen, A. (2005). Building 3D geological models directly from the data? A new approach applied to Broken Hill, Australia. Digital Mapping Techniques, 05, 119–130.

    Google Scholar 

  • Mezni, I., Chihi, H., Hammami, M. A., Gabtni, H., & Baba Sy, B. (2022). Regionalization of natural recharge zones using analytical hierarchy process in an arid hydrologic basin: A contribution for managed aquifer recharge. Natural Resources Research, 31(2), 867–895.

    Article  Google Scholar 

  • Nabawy, B. S., Basal, A. M. K., Sarhan, M. A., & Safa, M. G. (2018). Reservoir zonation, rock typing and compartmentalization of the Tortonian-Serravallian sequence, Temsah Gas Field, offshore Nile Delta, Egypt. Marine and Petroleum Geology, 92, 609–631.

    Article  Google Scholar 

  • Okoli, A. E., Agbasi, O. E., Lashin, A. A., & Sen, S. (2021). Static reservoir modeling of the eocene clastic reservoirs in the Q-field, Niger, Delta Nigeria. Natural Resources Research, 30(2), 1411–1425.

    Article  Google Scholar 

  • Ouillon, G., Ducorbier, C., & Sornette, D. (2008). Automatic reconstruction of fault networks from seismicity catalogs: Three-dimensional optimal anisotropic dynamic clustering. Journal of Geophysical Research, 113(B1). https://doi.org/10.1029/2007JB005032

  • Qadri, S. M. T., Islam, M. A., Shalaby, M. R., & Ali, S. H. (2020b). Integration of 1D and 3D modeling schemes to establish the Farewell Formation as a self-sourced reservoir in Kupe Field, Taranaki Basin, New Zealand. Frontiers of Earth Science, 15, 631–648.

    Article  Google Scholar 

  • Qadri, S. M. T., Islam, M. A., Shalaby, M. R., & El-Aal, A. K. A. (2020a). Reservoir quality evaluation of the Farewell sandstone by integrating sedimentological and well log analysis in the Kupe South Field, Taranaki Basin-New Zealand. Journal of Petroleum Exploration and Production Technology, 11, 11–31.

    Article  Google Scholar 

  • Radwan, A. E. (2022). Three-dimensional gas property geological modeling and simulation. In D. A. Wood & J. Cai (Eds.), Sustainable Geoscience for Natural Gas Subsurface Systems (pp. 29–49). Gulf Professional Publishing. https://doi.org/10.1016/B978-0-323-85465-8.00011-X

    Chapter  Google Scholar 

  • Renard, P., Straubhaar, J., Caers, J., & Mariethoz, G. (2011). Conditioning facies simulations with connectivity data. Mathematical Geosciences, 43(8), 879–903.

    Article  Google Scholar 

  • Rouatbi, R. (1967). Contribution à l'étude hydrogéologique du Karst en Terre de Gabès Sud. Ph.D. Thesis, Montpellier.

  • Shanley, R. J., & Mahtab, M. A. (1976). Delineation and analysis of clusters in orientation data. Mathematical Geology, 8(1), 9–23.

    Article  Google Scholar 

  • CorelDraw Graphics Suite X7 (2014). Graphic design software, Ottawa, Ontario, Canada. https://www.corel.com/en/

  • Thornton, J. M., Mariethoz, G., & Brunner, P. (2018). A 3D geological model of a structurally complex Alpine region as a basis for interdisciplinary research. Scientific Data, 5, 180238.

    Article  Google Scholar 

  • Wennberg, O. P., Logstein, J. I., & Hashemi, N. (2012). Fluid Flow Effects of Faults in Carbonate Reservoirs, an Example from the Kharyaga Field, Russia. In Proceedings of “The 3rd International Conference on Fault and Top Seals - From Characterization to Modelling Montpellier, France.

  • Yahyaoui, H., Chaieb, H., & Ouessar, M. (2002). Impact des travaux de conservation des eaux et des sols sur la recharge de la nappe de Zeuss-Koutine. In J. de Graff & M. Ouessar (Eds.), Water harvesting in Mediterranean zones: an impact assessment and economic evaluation. Tropical Resources Management Papers (pp. 71–86). The Netherlands: Wageningen University.

    Google Scholar 

Download references

Acknowledgments

This work was part of the project “Geomodeling and Natural Resources Characterization,” undertaken in the Georesources Laboratory of the Center for Water Research and Technologies. The authors would like to thank the Tunisian National Oil Company (ETAP) for providing seismic and petroleum well data and the General Directorate of Water Resources (DGRE) for providing borehole data.

Funding

Ministry of Higher Education and Scientific Research, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imen Mezni.

Ethics declarations

Conflict of Interest

All the authors that they have no conflict of interst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezni, I., Chihi, H., Bounasri, M. et al. Combined Geophysical–Geological Investigation for 3D Geological Modeling: Case of the Jeffara Reservoir Systems, Medenine Basin, SE Tunisia. Nat Resour Res 31, 1329–1350 (2022). https://doi.org/10.1007/s11053-022-10067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10067-2

Keywords

Navigation