Skip to main content

Advertisement

Log in

Recognizing Multivariate Geochemical Anomalies Related to Mineralization by Using Deep Unsupervised Graph Learning

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The spatial structure of geochemical patterns is influenced by various geological processes, one of which may be mineralization. Thus, analysis of spatial geochemical patterns facilitates understanding of regional metallogenic mechanisms and recognition of geochemical anomalies related to mineralization. Convolutional neural networks (CNNs) used in previous studies to extract spatial features require regular data (e.g., raster maps) as input. Due to the complex and diverse geological environment, geochemical samples are inevitably irregularly distributed and even partially missing in many spaces, leading to the inapplicability of CNN-based methods for geochemical anomaly identification. Also, interpolation from samples to regular grids often introduces uncertainties. To address these problems, this study innovatively transformed geochemical sampled point data into graphs and introduced graph learning to extract the geochemical patterns. Correspondingly, a novel framework of geochemical identification named GAUGE (recognition of Geochemical Anomalies Using Graph lEarning) is proposed. To assess the performance of the proposed method, this study recognized anomalies related to Au deposits in the Longyan area, the Wuyishan polymetallic metallogenic belt, China. For a set of regularly distributed samples, GAUGE achieved an accuracy similar to that of a traditional convolution autoencoder. More importantly, GAUGE achieved an area under the curve of 0.833, outperforming one-class support vector machine, isolation forest, autoencoder, and deep autoencoder network for a set of irregularly distributed samples by 10.6, 5.2, 4.8, and 2.5%, respectively. By introducing graph learning into geochemical anomaly recognition, this study provides a new perspective of extracting both spatial structure and compositional relationships of multivariate geochemical patterns, which can be applied directly to irregularly distributed samples in irregularly shaped regions without the need for interpolation. Such an improvement greatly enhances the applicability of machine learning methods in geochemical anomaly recognition, providing support for mineral resources evaluation and exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Ahmad, S., Lavin, A., Purdy, S., & Agha, Z. (2017). Unsupervised real-time anomaly detection for streaming data. Neurocomputing, 262, 134–147.

    Article  Google Scholar 

  • An, J., & Cho, S. (2015). Variational autoencoder based anomaly detection using reconstruction probability. Special Lecture on IE, 2(1), 1–18.

    Google Scholar 

  • Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

  • Barlow, H. B. (1989). Unsupervised learning. Neural Computation, 1(3), 295–311.

    Article  Google Scholar 

  • Beus, A. A., & Grigorian, S. V. (1977). Geochemical exploration methods for mineral deposits. Earth Science Reviews, 14(1), 67–69.

    Google Scholar 

  • Bin, J. I., Zhou, T., Yuan, F., Zhang, D., Liu, L., & Liu, G. (2017). A method for identifying geochemical anomalies based on spatial autocorrelation. Science Survery Mapping, 42, 24–27.

    Google Scholar 

  • Breunig, M.M., Kriegel, H., Ng, R.T., & Sander, J.O.R. (2000). LOF: identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international conference on Management of data, 93–104.

  • Brooks, D. B., & Andrews, P. W. (1974). Mineral Resources, Economic Growth, and World Populatic. Science, 185(4145), 13–19.

    Article  Google Scholar 

  • Cameron, E. M., et al. (2005). Geochemical Exploration. In R. C. Selley (Ed.), Encyclopedia of Geology (pp. 21–29). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74, 60–70.

    Article  Google Scholar 

  • Chao, T. T. (1984). Use of partial dissolution techniques in geochemical exploration. Journal of Geochemical Exploration, 20(2), 101–135.

    Article  Google Scholar 

  • Chayes, F. (1971). Ratio correlation: a manual for students of petrology and geochemistry. University of Chicago Press.

    Google Scholar 

  • Chen, Z.J., Cheng, Q.M., & Chen, J.G. (2009). Comparison of different models for anomaly recognition of geochemical data by using sample ranking method Earth Science—Journal of China University of Geosciences.

  • Chen, J., Cooke, D. R., Piquer, J. E., Selley, D., Zhang, L., & White, N. C. (2019a). Hydrothermal alteration, mineralization, and structural geology of the Zijinshan high-sulfidation Au-Cu deposit, Fujian Province. Southeast China. Economic Geology, 114(4), 639–666.

    Article  Google Scholar 

  • Chen, L., Guan, Q., Feng, B., Yue, H., Wang, J., & Zhang, F. (2019b). A multi-convolutional autoencoder approach to multivariate geochemical anomaly recognition. Minerals, 9(5), 270.

    Article  Google Scholar 

  • Chen, L., Guan, Q., Xiong, Y., Liang, J., Wang, Y., & Xu, Y. (2019c). A spatially constrained multi-autoencoder approach for multivariate geochemical anomaly recognition. Computers & Geosciences, 125, 43–54.

    Article  Google Scholar 

  • Chen, Y., Lu, L., & Li, X. (2014). Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly. Journal of Geochemical Exploration, 140, 56–63.

    Article  Google Scholar 

  • Chen, Y., & Wu, W. (2017). Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data. Geochemistry Exploration, Environment Analysis, 17(3), 231–238.

    Article  Google Scholar 

  • Cheng, Q. (1999). Spatial and scaling modelling for geochemical anomaly separation. Journal of Geochemical Exploration, 65(3), 175–194.

    Article  Google Scholar 

  • Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51(2), 109–130.

    Article  Google Scholar 

  • Cheng, Q., Bonham-Carter, G., Wang, W., Zhang, S., Li, W., & Qinglin, X. (2011). A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan. China. Computers & Geosciences, 37(5), 662–669.

    Article  Google Scholar 

  • Cheng, Q., Xu, Y., & Grunsky, E. (2000). Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research, 9(1), 43–52.

    Article  Google Scholar 

  • Christmann, P. (2018). Towards a more equitable use of mineral resources. Natural Resources Research, 27(2), 159–177.

    Article  Google Scholar 

  • Dikang, X., Zongxia, G., & Huimin, H. (1997). Ore Formation Model and Mineral Search Model for Copper and Gold Deposits in Southeast China. China University of Geosciences Press.

  • Fabrigar, L. R., & Wegener, D. T. (2011). Exploratory factor analysis. Oxford University Press.

    Book  Google Scholar 

  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.

    Article  Google Scholar 

  • Finney, D. J. (1952). Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press.

    Google Scholar 

  • Ge, Y., Cheng, Q., & Zhang, S. (2005). Reduction of edge effects in spatial information extraction from regional geochemical data: a case study based on multifractal filtering technique. Computers & Geosciences, 31(5), 545–554.

    Article  Google Scholar 

  • Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. JMLR Workshop and Conference Proceedings, 315–323.

  • Goodchild, M.F. (1986). Spatial autocorrelation. Geo Books.

  • Guan, Q., Ren, S., Chen, L., Feng, B., & Yao, Y. (2021). A spatial-compositional feature fusion convolutional autoencoder for multivariate geochemical anomaly recognition. Computers & Geosciences, 1, 104890.

    Article  Google Scholar 

  • Hardin, J., & Rocke, D. M. (2004). Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator. Computational Statistics & Data Analysis, 44(4), 625–638.

    Article  Google Scholar 

  • He, Z., Xu, X., & Deng, S. (2003). Discovering cluster-based local outliers. Pattern Recognition Letters, 24(9–10), 1641–1650.

    Article  Google Scholar 

  • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.

    Article  Google Scholar 

  • Huang, C., Liu, Q., & Zhang, K. (1999). Geophysical and geochemical characters and ore-finding pattern of the zijinshan copper-gold orefield, in Shanghang County, Fujian Province. Geology of Fujian, 4(1999), 189–201.

    Google Scholar 

  • Jianhua, D., Jianfu, F., Jiangning, Y., & Yaling, L. (2016). Geological Characteristics and mineral resource potential of the Wuyishan Cu-Pb-Zn polymetallic metallogenic belt. Acta Geologica Sinica, 90(7), 1537–1550.

    Google Scholar 

  • Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: trends, perspectives, and prospects. Science, 349(6245), 255–260.

    Article  Google Scholar 

  • Kingma, D.P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.

  • Kipf, T.N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  Google Scholar 

  • Li, B., & Jiang, S. (2017). Genesis of the giant Zijinshan epithermal Cu-Au and Luoboling porphyry Cu–Mo deposits in the Zijinshan ore district, Fujian Province, SE China: A multi-isotope and trace element investigation. Ore Geology Reviews, 88, 753–767.

    Article  Google Scholar 

  • Li, C., Ma, T., & Shi, J. (2003). Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration, 77(2–3), 167–175.

    Article  Google Scholar 

  • Li, H., Li, X., Yuan, F., Jowitt, S. M., Zhang, M., Zhou, J., Zhou, T., Li, X., Ge, C., & Wu, B. (2020). Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian-Zhangbaling area, Anhui Province. China. Applied Geochemistry, 122, 104747.

    Article  Google Scholar 

  • Li, S., Chen, J., & Xiang, J. (2020). Applications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big data. Neural computing and applications, 32(7), 2037–2053.

    Article  Google Scholar 

  • Li, X., Fan, H., Santosh, M., Hu, F., Yang, K., & Lan, T. (2013). Hydrothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong Gold Province, China. Ore Geology Reviews, 53, 403–421.

    Article  Google Scholar 

  • Lin, J., Tang, G., Xu, T., Cai, H., Lu, Q., Bai, Z., Deng, Y., Huang, M., & Jin, X. (2020). P-wave velocity structure in upper crust and crystalline basement of the Qinhang and Wuyishan Metallogenic belts: constraint from the Wanzai-Hui’an deep seismic sounding profile. Chinese Journal of Geophysics, 63(12), 4396–4409.

    Google Scholar 

  • Liu, F.T., Ting, K.M., & Zhou, Z. (2008). Isolation forest. In 2008 eighth IEEE international conference on data mining. IEEE, 413–422.

  • Luo, Z., Xiong, Y., & Zuo, R. (2020). Recognition of geochemical anomalies using a deep variational autoencoder network. Applied Geochemistry, 122, 104710.

    Article  Google Scholar 

  • Maas, A.L., Hannun, A.Y., Ng, A.Y., & Others (2013). Rectifier nonlinearities improve neural network acoustic models. In International Conference on Machine Learning, 3.

  • Mao, J., Zhao, X., Ye, H., Hu, Q., Liu, K., & Yang, F. (2010). Tectono-magmatic mineralization and evolution in Wuyishan metallogenic belt. Shanghai Geology, 31(S1), 140–145.

    Google Scholar 

  • Mathieu, L. (2018). Quantifying hydrothermal alteration: A review of methods. Geosciences, 8(7), 245.

    Article  Google Scholar 

  • Matschullat, J. O. R., Ottenstein, R., & Reimann, C. (2000). Geochemical background–can we calculate it? Environmental Geology, 39(9), 990–1000.

    Article  Google Scholar 

  • Nai-Zheng, X. U., Mao, J. R., Hai-Min, Y. E., Shen, M. T., Liu, Y. P., & Chen, L. Z. (2008). Geological characteristics and new ore-finding progress in the dapai lead and zinc deposit of yongding county, fujian province. Geology and Prospecting, 44(4), 20–23.

    Google Scholar 

  • Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., & Others (2019). Pytorch: An imperative style, high-performance deep learning library. arXiv preprint arXiv:1912.01703.

  • Porwal, A., Carranza, E., & Hale, M. (2003). Artificial neural networks for mineral-potential mapping: a case study from Aravalli Province. Western India. Natural Resources Research, 12(3), 155–171.

    Article  Google Scholar 

  • Qiu, X.P., Lan, Y.Z., Fuzhou, Fujian, Beijing and Group, Z.M. (2010). The Key to the Study of Deep Mineralization and the Evaluation of Ore-prospecting Potential in the Zijinshan Gold and Copper Deposit. Acta Geoscientica Sinica, 31(2), 209–215.

    Google Scholar 

  • Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the support of a high-dimensional distribution. Neural Computation, 13(7), 1443–1471.

    Article  Google Scholar 

  • Singer, D. A., Berger, V. I., & Moring, B. C. (2008). Porphyry copper deposits of the world: Database and grade and tonnage models: USGS Open-File Report 2008–1155. USGS: Reston, VA, USA.

    Google Scholar 

  • So, C., Dequan, Z., Yun, S., & Daxing, L. (1998). Alteration-mineralization zoning and fluid inclusions of the high sulfidation epithermal Cu-Au mineralization at Zijinshan, Fujian Province. China. Economic Geology, 93(7), 961–980.

    Article  Google Scholar 

  • Survey, D.R.C.O., & Survey, F.I.O.G. (2014). Study on the geological background of mineralization and mineralization pattern of Wuyishan mineralization zone. Geological Press.

  • Tang, J., Chen, Z., Fu, A.W., & Cheung, D.W. (2002). Enhancing effectiveness of outlier detections for low density patterns. Springer, 535–548.

  • Tang, Y., Zhao, L., Zhang, S., Gong, C., Li, G., & Yang, J. (2020). Integrating prediction and reconstruction for anomaly detection. Pattern Recognition Letters, 129, 123–130.

    Article  Google Scholar 

  • Tobler, W. (2004). On the first law of geography: a reply. Annals of the Association of American Geographers, 94(2), 304–310.

    Article  Google Scholar 

  • Twarakavi, N. K., Misra, D., & Bandopadhyay, S. (2006). Prediction of arsenic in bedrock derived stream sediments at a gold mine site under conditions of sparse data. Natural Resources Research, 15(1), 15–26.

    Article  Google Scholar 

  • Veli, V.C., Kovi, C, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.

  • Wang, J., & Zuo, R. (2019). Recognizing geochemical anomalies via stochastic simulation-based local singularity analysis. Journal of Geochemical Exploration, 198, 29–40.

    Article  Google Scholar 

  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–3), 37–52.

    Article  Google Scholar 

  • Xie, X., Mu, X., & Ren, T. (1997). Geochemical mapping in China. Journal of Geochemical Exploration, 60(1), 99–113.

    Article  Google Scholar 

  • Xiong, Y., & Zuo, R. (2016). Recognition of geochemical anomalies using a deep autoencoder network. Computers & Geosciences, 86, 75–82.

    Article  Google Scholar 

  • Xiong, Y., & Zuo, R. (2020). Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine. Computers & Geosciences, 140, 104484.

    Article  Google Scholar 

  • Xiong, Y., & Zuo, R. (2021). Robust feature extraction for geochemical anomaly recognition using a stacked convolutional denoising autoencoder. Mathematical Geosciences, 1–22.

  • Yousefi, M., & Carranza, E. J. M. (2015). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers & Geosciences, 74, 97–109.

    Article  Google Scholar 

  • Zaw, K. (2007). Mineral deposit types and metallogenic relations of South China and adjacent areas of Mainland SE Asia: implications for mineral exploration. Geology.

  • Zhang, Z., Cui, P., & Zhu, W. (2020). Deep learning on graphs: A survey. IEEE Transactions on Knowledge and Data Engineering.

  • Zhang, S., Carranza, E.J.M., Xiao, K., Wei, H., Yang, F., Chen, Z., Li, N., & Xiang, J. (2021a). Mineral prospectivity mapping based on isolation forest and random forest: implication for the existence of spatial signature of mineralization in outliers. Natural Resources Research, 1–19.

  • Zhang, B., Wang, X., Ye, R., Zhou, J., Liu, H., Liu, D., Han, Z., Lin, X., & Wang, Z. (2015). Geochemical exploration for concealed deposits at the periphery of the Zijinshan copper–gold mine, southeastern China. Journal of Geochemical Exploration, 157, 184–193.

    Article  Google Scholar 

  • Zhang, C., & Zuo, R. (2021). Recognition of multivariate geochemical anomalies associated with mineralization using an improved generative adversarial network. Ore Geology Reviews, 136, 104264.

    Article  Google Scholar 

  • Zhang, C., Zuo, R., & Xiong, Y. (2021a). Detection of the multivariate geochemical anomalies associated with mineralization using a deep convolutional neural network and a pixel-pair feature method. Applied Geochemistry, 130, 104994.

    Article  Google Scholar 

  • Zhang, D. Q., Feng, C. Y., Li, D. X., She, H. Q., & Dong, Y. J. (2005). The evolution of ore-forming fluids in the porphyry-epithermal metallogenic system of Zijinshan area. Acta Geoscientica Sinica, 26(2), 127–136.

    Google Scholar 

  • Zhang, S., Carranza, E. J. M., Wei, H., Xiao, K., Yang, F., Xiang, J., Zhang, S., & Xu, Y. (2021b). Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional auto-encoder network and supervised convolutional neural network. Natural Resources Research, 30(2), 1011–1031.

    Article  Google Scholar 

  • Zhao, P. D. (2002). Three-component" quantitative resource prediction and assessments: theory and practice of digital mineral prospecting. Earth Science-Journal of China university of Geosciences, 27(5), 482–489.

    Google Scholar 

  • Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., & Sun, M. (2018). Graph neural networks: a review of methods and applications. arXiv preprint arXiv:1812.08434.

  • Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., & Chen, H. (2018). Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In International conference on learning representations.

  • Zuo, R., Kreuzer, O.P., Wang, J., Xiong, Y., Zhang, Z., & Wang, Z. (2021). Uncertainties in GIS-based mineral prospectivity mapping: Key types, potential impacts and possible solutions. Natural Resources Research, 1–21.

  • Zuo, R. (2017). Machine learning of mineralization-related geochemical anomalies: a review of potential methods. Natural Resources Research, 26(4), 457–464.

    Article  Google Scholar 

  • Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: a tool for mapping mineral prospectivity. Computers & Geosciences, 37(12), 1967–1975.

    Article  Google Scholar 

  • Zuo, R., & Xiong, Y. (2020). Geodata science and geochemical mapping. Journal of Geochemical Exploration, 209, 106431.

    Article  Google Scholar 

  • Zuo, R., Xiong, Y., Wang, J., & Carranza, E. J. M. (2019). Deep learning and its application in geochemical mapping. Earth-Science Reviews, 192, 1–14.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Dr. John Carranza’s, Dr. Renguang Zuo’s and two anonymous reviewers’ comments and suggestions, which helped us improve this manuscript. This work was supported by the National Key Research and Development Program of China (Grant No. 2019YFB2102903), the National Natural Science Foundation of China (Grant No. 42171466, 41801306 and U1711267), the Scientific Research Program of the Department of Natural Resources of Hubei Province (Grant No. ZRZY2021KJ02), the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Grant No. MSFGPMR03-4), the “CUG Scholar” Scientific Research Funds at China University of Geosciences (Wuhan) (Grant No. 2022034), and the Zhejiang Provincial Natural Science Foundation (Grant No. LY18D010001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Yao.

Ethics declarations

Conflict of Interest

No conflict of interest exists in the submission of this manuscript.

Appendices

Appendix

Global Moran′s I Method for Spatial Autocorrelation

Spatial autocorrelation indicates a significant spatial distribution pattern in space through the degree of correlation between spatial objects in a region. Global Moran′s I is a common metric for quantitative representation of spatial autocorrelation (Goodchild, 1986). Its mathematical equation is:

$$I = \frac{n}{{S_{0} }}\frac{{\mathop \sum \nolimits_{i = 1}^{n} \mathop \sum \nolimits_{j = 1}^{n} w_{i,j} \left( {x_{i} - \overline{x}} \right)\left( {x_{j} - \overline{x}} \right)}}{{\mathop \sum \nolimits_{i = 1}^{n} \left( {x_{i} - \overline{x}} \right)^{2} }}$$
(15)

where \(x_{i}\), \(x_{j}\) are sampling values at sampling point \(i\) and \(j\), respectively; \(\overline{x}\) is the mean value; \(w_{i,j}\) denotes weights representing the proximity relationship between sampling points \(i\) and \(j\). Generally, \(w_{i,j}\) is related to the distance band selection, and here we calculated the spatial weights for samples only within distance K. \(S_{0}\) is the sum of all elements of the spatial weight matrix \({\text{W}}\). \(I\) is Global Moran’s I value, which ranges from -1 to 1. The closer it is to 1, the stronger the spatial autocorrelation is.

Activation Functions in GAT

The activation function is a function that maps inputs to outputs in neurons. It is important for deep learning models to extract and understand complex and nonlinear patterns. Sigmoid, LeakyReLU, and ReLU are used in GAUGE, and their mathematical equations are as follows:

Sigmoid (Finney, 1952):

$$Sigmoid\left( x \right) = \frac{1}{{1 + e^{ - x} }}$$
(16)

ReLU (Glorot et al., 2011):

$$Relu\left( x \right) = {\text{max}}\left( {0,x} \right)$$
(17)

LeakyReLU (Maas et al., 2013):

$$LeakyReLU\left( x \right) = {\text{max}}\left( {ax,x} \right)$$
(18)

where \(x\) indicates the input of activation function. \(Sigmoid\left( x \right)\), \(Relu\left( x \right)\), and \(LeakyReLU(x)\) are the output of the respective functions. The \(a of LeakyReLU\) defaults to 0.01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Q., Ren, S., Chen, L. et al. Recognizing Multivariate Geochemical Anomalies Related to Mineralization by Using Deep Unsupervised Graph Learning. Nat Resour Res 31, 2225–2245 (2022). https://doi.org/10.1007/s11053-022-10088-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10088-x

Keywords

Navigation