Skip to main content

Advertisement

Log in

A Potential Link Between Visceral Obesity and Risk of Alzheimer’s Disease

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common type of dementia characterized by the deposition of amyloid beta (Aβ) plaques and tau-neurofibrillary tangles in the brain. Visceral obesity (VO) is usually associated with low-grade inflammation due to higher expression of pro-inflammatory cytokines by adipose tissue. The objective of the present review was to evaluate the potential link between VO and the development of AD. Tissue hypoxia in obesity promotes tissue injury, production of adipocytokines, and release of pro-inflammatory cytokines leading to an oxidative-inflammatory loop with induction of insulin resistance. Importantly, brain insulin signaling is involved in the pathogenesis of AD and lower cognitive function. Obesity and enlargement of visceral adipose tissue are associated with the deposition of Aβ. All of this is consonant with VO increasing the risk of AD through the dysregulation of adipocytokines which affect the development of AD. The activated nuclear factor kappa B (NF-κB) pathway in VO might be a potential link in the development of AD. Likewise, the higher concentration of advanced glycation end-products in VO could be implicated in the pathogenesis of AD. Taken together, different inflammatory signaling pathways are activated in VO that all have a negative impact on the cognitive function and progression of AD except hypoxia-inducible factor 1 which has beneficial and neuroprotective effects in mitigating the progression of AD. In addition, VO-mediated hypoadiponectinemia and leptin resistance may promote the progression of Aβ formation and tau phosphorylation with the development of AD. In conclusion, VO-induced AD is mainly mediated through the induction of oxidative stress, inflammatory changes, leptin resistance, and hypoadiponectinemia that collectively trigger Aβ formation and neuroinflammation. Thus, early recognition of VO by visceral adiposity index with appropriate management could be a preventive measure against the development of AD in patients with VO.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data are available in the manuscript.

References

  1. Alsubaie N, Al-kuraishy HM, Al-Gareeb AI, Alharbi B, De Waard M, Sabatier J-M, Saad HM, Batiha GE-S (2022) Statins use in Alzheimer disease: bane or boon from frantic search and narrative review. Brain Sci 12:1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Reitz C, Rogaeva E, Beecham GW (2020) Late-onset vs nonmendelian early-onset Alzheimer disease: a distinction without a difference? Neurol Genet. https://doi.org/10.1212/NXG.0000000000000512

    Article  PubMed  PubMed Central  Google Scholar 

  3. Knopman DS, Petersen RC, Jack CR (2019) A brief history of “Alzheimer disease”: multiple meanings separated by a common name. Neurology 92:1053–1059

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jack CR, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, Hampel H, Jagust WJ, Johnson KA, Knopman DS (2016) A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87:539–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kern S, Zetterberg H, Kern J, Zettergren A, Waern M, Höglund K, Andreasson U, Wetterberg H, Börjesson-Hanson A, Blennow K (2018) Prevalence of preclinical Alzheimer disease: comparison of current classification systems. Neurology 90:e1682–e1691

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhu CW, Sano M (2006) Economic considerations in the management of Alzheimer’s disease. Clin Interv Aging 1:143

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88:640–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van der Kant R, Goldstein LS, Ossenkoppele R (2020) Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat Rev Neurosci 21:21–35

    Article  PubMed  Google Scholar 

  9. Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179:312–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Al-Kuraishy HM, Abdulhadi MH, Hussien NR, Al-Niemi MS, Rasheed HA, Al-Gareeb AI (2020) Involvement of orexinergic system in psychiatric and neurodegenerative disorders: a scoping review. Brain Circ 6:70

    Article  PubMed  PubMed Central  Google Scholar 

  11. Al-Kuraishy HM (2016) Central additive effect of Ginkgo biloba and Rhodiola rosea on psychomotor vigilance task and short-term working memory accuracy. J Intercult Ethnopharmacol 5:7

    Article  PubMed  Google Scholar 

  12. Al-Kuraishy HM, Al-Gareeb AI (2020) Citicoline improves human vigilance and visual working memory: the role of neuronal activation and oxidative stress. Basic Clin Neurosci 11:423

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Petersen C, Nolan AL, de Paula França Resende E, Miller Z, Ehrenberg AJ, Gorno-Tempini ML, Rosen HJ, Kramer JH, Spina S, Rabinovici GD (2019) Alzheimer’s disease clinical variants show distinct regional patterns of neurofibrillary tangle accumulation. Acta Neuropathol 138:597–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mendez MF (2019) Early-onset Alzheimer disease and its variants. Continuum 25:34

    PubMed  Google Scholar 

  15. Sharma A, Pachauri V, Flora S (2018) Advances in multi-functional ligands and the need for metal-related pharmacology for the management of Alzheimer disease. Front Pharmacol 9:1247

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yiannopoulou KG, Papageorgiou SG (2020) Current and future treatments in Alzheimer disease: an update. J Cent Nerv Syst Dis 12:1179573520907397

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hildreth KL, Van Pelt RE, Schwartz RS (2012) Obesity, insulin resistance, and Alzheimer’s disease. Obesity 20:1549

    Article  CAS  PubMed  Google Scholar 

  18. Verdile G, Keane KN, Cruzat VF, Medic S, Sabale M, Rowles J, Wijesekara N, Martins RN, Fraser PE, Newsholme P (2015) Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer’s disease. Mediat Inflamm 2015:105828. https://doi.org/10.1155/2015/105828

    Article  CAS  Google Scholar 

  19. Luchsinger JA, Cheng D, Tang MX, Schupf N, Mayeux R (2012) Central obesity in the elderly is related to late onset Alzheimer’s disease. Alzheimer Dis Assoc Disord 26:101

    Article  PubMed  PubMed Central  Google Scholar 

  20. Amato MC, Giordano C (2014) Visceral adiposity index: an indicator of adipose tissue dysfunction. Int J Endocrinol 2014:730827. https://doi.org/10.1155/2014/730827

    Article  PubMed  PubMed Central  Google Scholar 

  21. Al-Kuraishy HM, Al-Gareeb AI, Al-Buhadilly AK (2018) Rosuvastatin improves vaspin serum levels in obese patients with acute coronary syndrome. Diseases 6:9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Al-Kuraishy HM, Al-Gareeb AI (2016) Effect of orlistat alone or in combination with Garcinia cambogia on visceral adiposity index in obese patients. J Intercult Ethnopharmacol 5:408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alomair BM, Al-kuraishy HM, Al-Gareeb AI, Al-Hamash SM, De Waard M, Sabatier J-M, Saad HM, El-Saber Batiha G (2022) Montelukast and acute coronary syndrome: the endowed drug. Pharmaceuticals 15:1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gallagher D, Heymsfield SB, Heo M, Jebb SA, Murgatroyd PR, Sakamoto Y (2000) Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin Nutr 72:694–701

    Article  CAS  PubMed  Google Scholar 

  25. Freedman DS, Sherry B (2009) The validity of BMI as an indicator of body fatness and risk among children. Pediatrics 124:S23–S34

    Article  PubMed  Google Scholar 

  26. Flegal KM, Graubard BI, Williamson DF, Gail MH (2005) Excess deaths associated with underweight, overweight, and obesity. JAMA 293:1861–1867

    Article  CAS  PubMed  Google Scholar 

  27. Romero-Corral A, Montori VM, Somers VK, Korinek J, Thomas RJ, Allison TG, Mookadam F, Lopez-Jimenez F (2006) Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies. Lancet 368:666–678

    Article  PubMed  Google Scholar 

  28. Pinho CPS, Diniz AdS, Arruda IKGd, Leite APDL, Petribu MdMV, Rodrigues IG (2018) Waist circumference measurement sites and their association with visceral and subcutaneous fat and cardiometabolic abnormalities. Arch Endocrinol Metab 62:416–423

    Article  PubMed  Google Scholar 

  29. Kouli G-M, Panagiotakos DB, Kyrou I, Georgousopoulou EN, Chrysohoou C, Tsigos C, Tousoulis D, Pitsavos C (2017) Visceral adiposity index and 10-year cardiovascular disease incidence: the ATTICA study. Nutr Metab Cardiovasc Dis 27:881–889

    Article  PubMed  Google Scholar 

  30. Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M, Galluzzo A, Group AS (2010) Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 33:920–922

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li B, Lai X, Yan C, Jia X, Li Y (2020) The associations between neutrophil-to-lymphocyte ratio and the Chinese visceral adiposity index, and carotid atherosclerosis and atherosclerotic cardiovascular disease risk. Exp Gerontol 139:111019

    Article  CAS  PubMed  Google Scholar 

  32. Xie Y, Zhang Y, Qin P, Ping Z, Wang C, Peng X, Chen H, Zhao D, Xu S, Wang L (2022) The association between Chinese Visceral Adipose Index and coronary heart disease: a cohort study in China. Nutr Metab Cardiovasc Dis 32:550–559

    Article  CAS  PubMed  Google Scholar 

  33. Nusrianto R, Tahapary DL, Soewondo P (2019) Visceral adiposity index as a predictor for type 2 diabetes mellitus in Asian population: a systematic review. Diabetes Metab Syndr: Clin Res Rev 13:1231–1235

    Article  Google Scholar 

  34. Pekgor S, Duran C, Berberoglu U, Eryilmaz MA (2019) The role of visceral adiposity index levels in predicting the presence of metabolic syndrome and insulin resistance in overweight and obese patients. Metab Syndr Relat Disord 17:296–302

    Article  CAS  PubMed  Google Scholar 

  35. Nusrianto R, Ayundini G, Kristanti M, Astrella C, Amalina N, Riyadina W, Tahapary DL, Soewondo P (2019) Visceral adiposity index and lipid accumulation product as a predictor of type 2 diabetes mellitus: the Bogor cohort study of non-communicable diseases risk factors. Diabetes Res Clin Pract 155:107798

    Article  CAS  PubMed  Google Scholar 

  36. Fiorentino TV (2018) Visceral adiposity index (VAI), a powerful predictor of incident hypertension in prehypertensives. Intern Emerg Med 13:471–473

    Article  PubMed  Google Scholar 

  37. Elisha B, Messier V, Karelis A, Coderre L, Bernard S, Prud’homme D, Rabasa-Lhoret R (2013) The visceral adiposity index: relationship with cardiometabolic risk factors in obese and overweight postmenopausal women—a MONET group study. Appl Physiol Nutr Metab 38:892–899

    Article  PubMed  Google Scholar 

  38. Alkazmi L, Al-kuraishy HM, Batiha GE-S, Mostafa-Hedeab G, De Waard M, Sabatier J-M, Kabrah SM, Saad HM, Al-Gareeb AI, Simal-Gandara J (2022) Roxadustat for SARS-CoV-2 infection: old signaling raised new hopes. Drugs R&D 22(3):183–186

    Article  CAS  Google Scholar 

  39. Magnuson AM, Fouts JK, Regan DP, Booth AD, Dow SW, Foster MT (2018) Adipose tissue extrinsic factor: obesity-induced inflammation and the role of the visceral lymph node. Physiol Behav 190:71–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Al-kuraishy HM, Batiha GE-S, Faidah H, Al-Gareeb AI, Saad HM, Simal-Gandara J (2022) Pirfenidone and post-Covid-19 pulmonary fibrosis: invoked again for realistic goals. Inflammopharmacology. https://doi.org/10.1007/s10787-022-01027-6

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rhee KE, Phelan S, McCaffery J (2012) Early determinants of obesity: genetic, epigenetic, and in utero influences. Int J Pediatr 2012:463850. https://doi.org/10.1155/2012/463850

    Article  PubMed  PubMed Central  Google Scholar 

  42. Batiha GE-S, Al-kuraishy HM, Al-Maiahy TJ, Al-Buhadily AK, Saad HM, Al-Gareeb AI, Simal-Gandara J (2022) Plasminogen activator inhibitor 1 and gestational diabetes: the causal relationship. Diabetol Metab Syndr 14:127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nevalainen T, Kananen L, Marttila S, Jylhävä J, Mononen N, Kähönen M, Raitakari OT, Hervonen A, Jylhä M, Lehtimäki T (2017) Obesity accelerates epigenetic aging in middle-aged but not in elderly individuals. Clin Epigenetics 9:1–9

    Article  Google Scholar 

  44. Ou XH, Zhu CC, Sun SC (2019) Effects of obesity and diabetes on the epigenetic modification of mammalian gametes. J Cell Physiol 234:7847–7855

    Article  CAS  PubMed  Google Scholar 

  45. Martins IJ (2016) The role of clinical proteomics, lipidomics, and genomics in the diagnosis of Alzheimer’s disease. Proteomes 4:14

    Article  PubMed  PubMed Central  Google Scholar 

  46. Khan S, Chan YT, Revelo XS, Winer DA (2020) The immune landscape of visceral adipose tissue during obesity and aging. Front Endocrinol 11:267

    Article  Google Scholar 

  47. Yu J-Y, Choi W-J, Lee H-S, Lee J-W (2019) Relationship between inflammatory markers and visceral obesity in obese and overweight Korean adults: an observational study. Medicine 98:e14740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. El-Saber Batiha G, Al-Gareeb AI, Saad HM, Al-Kuraishy HM (2022) COVID-19 and corticosteroids: a narrative review. Inflammopharmacology. https://doi.org/10.1007/s10787-022-00987-z

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259:87–91

    Article  CAS  PubMed  Google Scholar 

  50. Ghigliotti G, Barisione C, Garibaldi S, Fabbi P, Brunelli C, Spallarossa P, Altieri P, Rosa G, Spinella G, Palombo D (2014) Adipose tissue immune response: novel triggers and consequences for chronic inflammatory conditions. Inflammation 37:1337–1353

    Article  CAS  PubMed  Google Scholar 

  51. Mostafa-Hedeab G, Al-Kuraishy HM, Al-Gareeb AI, Jeandet P, Saad HM, Batiha GE-S (2022) A raising dawn of pentoxifylline in management of inflammatory disorders in Covid-19. Inflammopharmacology. https://doi.org/10.1007/s10787-022-00993-1

    Article  PubMed  PubMed Central  Google Scholar 

  52. Henning RJ (2021) Obesity and obesity-induced inflammatory disease contribute to atherosclerosis: a review of the pathophysiology and treatment of obesity. Am J Cardiovasc Dis 11:504

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Singh M, Benencia F (2019) Inflammatory processes in obesity: focus on endothelial dysfunction and the role of adipokines as inflammatory mediators: we reviewed obesity-induced metabolic and immunological changes at the level of vasculature and emphasize on the importance of adipokines. Int Rev Immunol 38:157–171

    Article  PubMed  Google Scholar 

  54. Alorabi M, Cavalu S, Al-Kuraishy HM, Al-Gareeb AI, Mostafa-Hedeab G, Negm WA, Youssef A, El-Kadem AH, Saad HM, Batiha GE-S (2022) Pentoxifylline and berberine mitigate diclofenac-induced acute nephrotoxicity in male rats via modulation of inflammation and oxidative stress. Biomed Pharmacother 152:113225

    Article  CAS  PubMed  Google Scholar 

  55. Battineni G, Sagaro GG, Chintalapudi N, Amenta F, Tomassoni D, Tayebati SK (2021) Impact of obesity-induced inflammation on cardiovascular diseases (CVD). Int J Mol Sci 22:4798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Babalghith AO, Al-kuraishy HM, Al-Gareeb AI, De Waard M, Sabatier J-M, Saad HM, Batiha GE-S (2022) The potential role of growth differentiation factor 15 in COVID-19: a corollary subjective effect or not? Diagnostics 12:2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Al-Kuraishy HM, Al-Gareeb AI, Bungau SG, Radu A-F, Batiha GE-S (2022) The potential molecular implications of adiponectin in the evolution of SARS-CoV-2: inbuilt tendency. J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2022.102347

    Article  PubMed  PubMed Central  Google Scholar 

  58. Abdulhadi MH, Al-Kuraishy HM, Al-Gareeb AI (2021) Beneficial effects of levothyroxine replacement therapy on leptin adiponectin ratio in patients with idiopathic primary hypothyroidism. J Pak Med Assoc 71:S17–21

    Google Scholar 

  59. Gariballa S, Alkaabi J, Yasin J, Al Essa A (2019) Total adiponectin in overweight and obese subjects and its response to visceral fat loss. BMC Endocr Disord 19:1–6

    Article  CAS  Google Scholar 

  60. Hurtado-Roca Y, Bueno H, Fernandez-Ortiz A, Ordovas JM, Ibañez B, Fuster V, Rodriguez-Artalejo F, Laclaustra M (2017) Oxidized LDL is associated with metabolic syndrome traits independently of central obesity and insulin resistance. Diabetes 66:474–482

    Article  CAS  PubMed  Google Scholar 

  61. Al-Kuraishy HM, Hussian NR, Al-Naimi MS, Al-Gareeb AI, Al-Mamorri F, Al-Buhadily AK (2021) The potential role of pancreatic γ-aminobutyric acid (GABA) in diabetes mellitus: a critical reappraisal. Int J Prev Med 12:19

    PubMed  PubMed Central  Google Scholar 

  62. Al-Kuraishy HM, Al-Gareeb AI, Waheed HJ, Al-Maiahy TJ (2018) Differential effect of metformin and/or glyburide on apelin serum levels in patients with type 2 diabetes mellitus: concepts and clinical practice. J Adv Pharm Technol Res 9:80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Healy L, Ryan A, Carroll P, Ennis D, Crowley V, Boyle T, Kennedy M, Connolly E, Reynolds J (2010) Metabolic syndrome, central obesity and insulin resistance are associated with adverse pathological features in postmenopausal breast cancer. Clin Oncol 22:281–288

    Article  CAS  Google Scholar 

  64. Al-Kuraishy HM, Al-Gareeb AI, Shams HA, Al-Mamorri F (2019) Endothelial dysfunction and inflammatory biomarkers as a response factor of concurrent coenzyme Q10 add-on metformin in patients with type 2 diabetes mellitus. J Lab Physicians 11:317–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rasheed HA, Al-Kuraishy HM, Al-Gareeb AI, Hussien NR, Al-Nami MS (2019) Effects of diabetic pharmacotherapy on prolactin hormone in patients with type 2 diabetes mellitus: bane or boon. J Adv Pharm Technol Res 10:163

    Article  PubMed  PubMed Central  Google Scholar 

  66. Maciejczyk M, Żebrowska E, Chabowski A (2019) Insulin resistance and oxidative stress in the brain: what’s new? Int J Mol Sci 20:874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Al-Naimi MS, Rasheed HA, Al-Kuraishy HM, Al-Gareeb AI (2019) Berberine attenuates olanzapine induced-metabolic syndrome. J Pak Med Assoc 69(Suppl 3):S88–s92

    Google Scholar 

  68. Ye J (2013) Mechanisms of insulin resistance in obesity. Front Med 7:14–24

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hardy OT, Czech MP, Corvera S (2012) What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes 19:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Greenfield JR, Campbell LV (2004) Insulin resistance and obesity. Clin Dermatol 22:289–295

    Article  PubMed  Google Scholar 

  71. Kadowaki T, Hara K, Yamauchi T, Terauchi Y, Tobe K, Nagai R (2003) Molecular mechanism of insulin resistance and obesity. Exp Biol Med 228:1111–1117

    Article  CAS  Google Scholar 

  72. Al-Nami MS, Al-Kuraishy HM, Al-Gareeb AI (2020) Impact of thioctic acid on glycemic indices and associated inflammatory-induced endothelial dysfunction in patients with type 2 diabetes mellitus: a case control study. Int J Crit Illn Inj Sci 10:21

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wu H, Ballantyne CM (2020) Metabolic inflammation and insulin resistance in obesity. Circ Res 126:1549–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Arvanitakis Z, Wang HY, Capuano AW, Khan A, Taïb B, Anokye-Danso F, Schneider JA, Bennett DA, Ahima RS, Arnold SE (2020) Brain insulin signaling, Alzheimer disease pathology, and cognitive function. Ann Neurol 88:513–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Selles MC, Fortuna JT, Zappa-Villar MF, de Faria YP, Souza AS, Suemoto CK, Leite RE, Rodriguez RD, Grinberg LT, Reggiani PC (2020) Adenovirus-mediated transduction of insulin-like growth factor 1 protects hippocampal neurons from the toxicity of Aβ oligomers and prevents memory loss in an Alzheimer mouse model. Mol Neurobiol 57:1473–1483

    Article  CAS  PubMed  Google Scholar 

  76. Hallschmid M (2021) Intranasal insulin for Alzheimer’s disease. CNS Drugs 35:21–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pomytkin I, Costa-Nunes JP, Kasatkin V, Veniaminova E, Demchenko A, Lyundup A, Lesch KP, Ponomarev ED, Strekalova T (2018) Insulin receptor in the brain: mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci Ther 24:763–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kuwabara T, Kagalwala MN, Onuma Y, Ito Y, Warashina M, Terashima K, Sanosaka T, Nakashima K, Gage FH, Asashima M (2011) Insulin biosynthesis in neuronal progenitors derived from adult hippocampus and the olfactory bulb. EMBO Mol Med 3:742–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Convit A (2005) Links between cognitive impairment in insulin resistance: an explanatory model. Neurobiol Aging 26:31–35

    Article  PubMed  Google Scholar 

  80. Gerozissis K (2003) Brain insulin: regulation, mechanisms of action and functions. Cell Mol Neurobiol 23:1–25

    Article  PubMed  Google Scholar 

  81. Chapman CD, Schiöth HB, Grillo CA, Benedict C (2018) Intranasal insulin in Alzheimer’s disease: food for thought. Neuropharmacology 136:196–201

    Article  CAS  PubMed  Google Scholar 

  82. Kellar D, Craft S (2020) Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol 19:758–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kothari V, Luo Y, Tornabene T, O’Neill AM, Greene MW, Geetha T, Babu JR (2017) High fat diet induces brain insulin resistance and cognitive impairment in mice. Biochim Biophys Acta 1863:499–508

    Article  CAS  Google Scholar 

  84. De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, Viola KL, Zhao W-Q, Ferreira ST, Klein WL (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc Natl Acad Sci USA 106:1971–1976

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gratuze M, Julien J, Petry FR, Morin F, Planel E (2017) Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer’s disease-like tau pathology. Sci Rep 7:1–13

    Article  Google Scholar 

  86. Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25:5789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bradley D (2020) Clusterin as a potential biomarker of obesity-related Alzheimer’s disease risk. Biomark Insights 15:1177271920964108

    Article  PubMed  PubMed Central  Google Scholar 

  88. Oh SB, Kim MS, Park S, Son H, Kim SY, Kim MS, Jo DG, Tak E, Lee JY (2019) Clusterin contributes to early stage of Alzheimer’s disease pathogenesis. Brain Pathol 29:217–231

    Article  CAS  PubMed  Google Scholar 

  89. Wittwer J, Bradley D (2021) Clusterin and its role in insulin resistance and the cardiometabolic syndrome. Front Immunol 12:612496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shie F-S, Shiao Y-J, Yeh C-W, Lin C-H, Tzeng T-T, Hsu H-C, Huang F-L, Tsay H-J, Liu H-K (2015) Obesity and hepatic steatosis are associated with elevated serum amyloid beta in metabolically stressed APPswe/PS1dE9 mice. PLoS ONE 10:e0134531

    Article  PubMed  PubMed Central  Google Scholar 

  91. Meakin PJ, Coull BM, Tuharska Z, McCaffery C, Akoumianakis I, Antoniades C, Brown J, Griffin KJ, Platt F, Ozber CH (2020) Elevated circulating amyloid concentrations in obesity and diabetes promote vascular dysfunction. J Clin Investig 130:4104–4117

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Platt TL, Beckett TL, Kohler K, Niedowicz DM, Murphy MP (2016) Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease. Neuroscience 315:162–174

    Article  CAS  PubMed  Google Scholar 

  93. Kelleher I, Garwood C, Hanger DP, Anderton BH, Noble W (2007) Kinase activities increase during the development of tauopathy in htau mice. J Neurochem 103:2256–2267

    Article  CAS  PubMed  Google Scholar 

  94. Kim OY, Song J (2018) The role of irisin in Alzheimer’s disease. J Clin Med 7:407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jin Y, Sumsuzzman DM, Choi J, Kang H, Lee S-R, Hong Y (2018) Molecular and functional interaction of the myokine irisin with physical exercise and Alzheimer’s disease. Molecules 23:3229

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rotimi DE, Ben-Goru GM, Evbuomwan IO, Elebiyo TC, Alorabi M, Farasani A, Batiha GE-S, Adeyemi OS (2022) Zingiber officinale and Vernonia amygdalina infusions improve redox status in rat brain. Evid Based Complement Alternat Med. https://doi.org/10.1155/2022/9470178

    Article  PubMed  PubMed Central  Google Scholar 

  97. de Freitas GB, Lourenco MV, De Felice FG (2020) Protective actions of exercise-related FNDC5/Irisin in memory and Alzheimer’s disease. J Neurochem 155:602–611

    Article  PubMed  Google Scholar 

  98. Arhire LI, Mihalache L, Covasa M (2019) Irisin: a hope in understanding and managing obesity and metabolic syndrome. Front Endocrinol 10:524

    Article  Google Scholar 

  99. Leung WK, Yu AP, Lai CW, Siu PM (2018) Association of markers of proinflammatory phenotype and beige adipogenesis with metabolic syndrome in chinese centrally obese adults. J Diabetes Research. https://doi.org/10.1155/2018/8956509

    Article  Google Scholar 

  100. Atti AR, Palmer K, Volpato S, Winblad B, De Ronchi D, Fratiglioni L (2008) Late-life body mass index and dementia incidence: nine‐year follow‐up data from the Kungsholmen Project. J Am Geriatr Soc 56:111–116

    Article  PubMed  Google Scholar 

  101. Gustafson D (2008) A life course of adiposity and dementia. Eur J Pharmacol 585:163–175

    Article  CAS  PubMed  Google Scholar 

  102. Burns JM, Johnson DK, Watts A, Swerdlow RH, Brooks WM (2010) Reduced lean mass in early Alzheimer disease and its association with brain atrophy. Arch Neurol 67:428–433

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kim HJ, Kim C, Jeon S, Kang M, Kim YJ, Lee J-M, Shin H-Y, Cho H, Ye BS, Kim J-H (2015) Association of body fat percentage and waist-hip ratio with brain cortical thickness. Alzheimer Dis Assoc Disord 29:279–286

    Article  PubMed  Google Scholar 

  104. Bates KA, Sohrabi HR, Rodrigues M, Beilby J, Dhaliwal SS, Taddei K, Criddle A, Wraith M, Howard M, Martins G (2009) Association of cardiovascular factors and Alzheimer’s disease plasma amyloid-β protein in subjective memory complainers. J Alzheimers Dis 17:305–318

    Article  CAS  PubMed  Google Scholar 

  105. Pasha EP, Birdsill A, Parker P, Elmenshawy A, Tanaka H, Haley AP (2017) Visceral adiposity predicts subclinical white matter hyperintensities in middle-aged adults. Obes Res Clin Pract 11:177–187

    Article  PubMed  Google Scholar 

  106. Mohamed HE, Abo-ELmatty DM, Mesbah NM, Saleh SM, Ali A-MA, Sakr AT (2018) Raspberry ketone preserved cholinergic activity and antioxidant defense in obesity induced Alzheimer disease in rats. Biomed Pharmacother 107:1166–1174

    Article  CAS  PubMed  Google Scholar 

  107. Poor SR, Ettcheto M, Cano A, Sanchez-Lopez E, Manzine PR, Olloquequi J, Camins A, Javan M (2021) Metformin a potential pharmacological strategy in late onset Alzheimer’s disease treatment. Pharmaceuticals 14:890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ebrahimpour S, Zakeri M, Esmaeili A (2020) Crosstalk between obesity, diabetes, and alzheimer’s disease: Introducing quercetin as an effective triple herbal medicine. Ageing Res Rev 62:101095

    Article  CAS  PubMed  Google Scholar 

  109. Donohoe F, Wilkinson M, Baxter E, Brennan DJ (2020) Mitogen-activated protein kinase (MAPK) and obesity-related cancer. Int J Mol Sci 21:1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Munoz L, Ammit AJ (2010) Targeting p38 MAPK pathway for the treatment of Alzheimer’s disease. Neuropharmacology 58:561–568

    Article  CAS  PubMed  Google Scholar 

  111. Lin A-L, Zheng W, Halloran JJ, Burbank RR, Hussong SA, Hart MJ, Javors M, Shih Y-YI, Muir E, Fonseca RS (2013) Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer’s disease. J Cereb Blood Flow Metab 33:1412–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vandanmagsar B, Youm Y-H, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM, Dixit VD (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17:179–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hanslik KL, Ulland TK (2020) The role of microglia and the Nlrp3 inflammasome in Alzheimer’s disease. Front Neurol 11:570711

    Article  PubMed  PubMed Central  Google Scholar 

  114. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat Immunol 9:857–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, Schwartz S, Albasset S, McManus RM, Tejera D (2019) NLRP3 inflammasome activation drives tau pathology. Nature 575:669–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shoelson S, Lee J, Yuan M (2003) Inflammation and the IKKβ/IκB/NF-κB axis in obesity-and diet-induced insulin resistance. Int J Obes 27:S49–S52

    Article  CAS  Google Scholar 

  117. Granic I, Dolga AM, Nijholt IM, van Dijk G, Eisel UL (2009) Inflammation and NF-kappaB in Alzheimer’s disease and diabetes. J Alzheimers Dis 16:809–821

    Article  PubMed  Google Scholar 

  118. Egaña-Gorroño L, López-Díez R, Yepuri G, Ramirez LS, Reverdatto S, Gugger PF, Shekhtman A, Ramasamy R, Schmidt AM (2020) Receptor for advanced glycation end products (RAGE) and mechanisms and therapeutic opportunities in diabetes and cardiovascular disease: insights from human subjects and animal models. Front Cardiovasc Med 7:37

    Article  PubMed  PubMed Central  Google Scholar 

  119. Beeri MS, Uribarri J, Cai W, Buchman AS, Haroutunian V (2020) Human Brain and serum advanced glycation end products are highly correlated: preliminary results of their role in Alzheimer disease and type 2 diabetes. Endocr Pract 26:576–577

    Article  PubMed  PubMed Central  Google Scholar 

  120. Gaspar JM, Velloso LA (2018) Hypoxia inducible factor as a central regulator of metabolism— implications for the development of obesity. Front Neurosci 12:813

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hassan H, Chen R (2021) Hypoxia in Alzheimer’s disease: effects of hypoxia inducible factors. Neural Regener Res 16:310–311

    Article  CAS  Google Scholar 

  122. Zhang F, Zhong R, Qi H, Li S, Cheng C, Liu X, Liu Y, Le W (2018) Impacts of acute hypoxia on Alzheimer’s disease-like pathologies in APPswe/PS1dE9 mice and their wild type littermates. Front Neurosci 12:314

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lall R, Mohammed R, Ojha U (2019) What are the links between hypoxia and Alzheimer’s disease? Neuropsychiatr Dis Treat 15:1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mariani S, Di Giorgio MR, Rossi E, Tozzi R, Contini S, Bauleo L, Cipriani F, Toscano R, Basciani S, Barbaro G (2020) Blood SIRT1 shows a coherent association with leptin and adiponectin in relation to the degree and distribution of adiposity: a study in obesity, normal weight and anorexia nervosa. Nutrients 12:3506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kuang H, Tan CY, Tian HZ, Liu LH, Yang MW, Hong FF, Yang SL (2020) Exploring the bi-directional relationship between autophagy and Alzheimer’s disease. CNS Neurosci Ther 26:155–166

    Article  PubMed  Google Scholar 

  126. Sousa C, Mendes AF (2022) Monoterpenes as sirtuin-1 activators: therapeutic potential in aging and related diseases. Biomolecules 12:921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li L (2017) The molecular mechanism of glucagon-like peptide-1 therapy in Alzheimer’s disease, based on a mechanistic target of rapamycin pathway. CNS Drugs 31:535–549

    Article  CAS  PubMed  Google Scholar 

  128. Rheinheimer J, de Souza BM, Cardoso NS, Bauer AC, Crispim D (2017) Current role of the NLRP3 inflammasome on obesity and insulin resistance: a systematic review. Metabolism 74:1–9

    Article  CAS  PubMed  Google Scholar 

  129. Legrand-Poels S, Esser N, L’homme L, Scheen A, Paquot N, Piette J (2014) Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem Pharmacol 92:131–141

    Article  CAS  PubMed  Google Scholar 

  130. Tan M-S, Yu J-T, Jiang T, Zhu X-C, Tan L (2013) The NLRP3 inflammasome in Alzheimer’s disease. Mol Neurobiol 48:875–882

    Article  CAS  PubMed  Google Scholar 

  131. Stancu I-C, Cremers N, Vanrusselt H, Couturier J, Vanoosthuyse A, Kessels S, Lodder C, Brône B, Huaux F, Octave J-N (2019) Aggregated Tau activates NLRP3–ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo. Acta Neuropathol 137:599–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Heneka MT, McManus RM, Latz E (2018) Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci 19:610–621

    Article  CAS  PubMed  Google Scholar 

  133. Al-Kuraishy HM, Al-Gareeb AI, Al-Maiahy TJ, Alexiou A, Mukerjee N, Batiha GE-S (2022) Prostaglandins and non-steroidal anti-inflammatory drugs in Covid-19. Biotechnol Genet Eng Rev:1–21

    Google Scholar 

  134. Tornatore L, Thotakura AK, Bennett J, Moretti M, Franzoso G (2012) The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol 22:557–566

    Article  CAS  PubMed  Google Scholar 

  135. Guo YP, Jiang HK, Jiang H, Tian HY, Li L (2018) Lipoxin A4 may attenuate the progression of obesity-related glomerulopathy by inhibiting NF-κB and ERK/p38 MAPK-dependent inflammation. Life Sci 198:112–118

    Article  CAS  PubMed  Google Scholar 

  136. Batiha GE-S, Al-Gareeb AI, Elekhnawy E, Al-Kuraishy HM (2022) Potential role of lipoxin in the management of COVID-19: a narrative review. Inflammopharmacology. https://doi.org/10.1007/s10787-022-01070-3

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ben J, Jiang B, Wang D, Liu Q, Zhang Y, Qi Y, Tong X, Chen L, Liu X, Zhang Y, Zhu X, Li X, Zhang H, Bai H, Yang Q, Ma J, Wiemer EAC, Xu Y, Chen Q (2019) Major vault protein suppresses obesity and atherosclerosis through inhibiting IKK-NF-κB signaling mediated inflammation. Nat Commun 10:1801

    Article  PubMed  PubMed Central  Google Scholar 

  138. Shi ZM, Han YW, Han XH, Zhang K, Chang YN, Hu ZM, Qi HX, Ting C, Zhen Z, Hong W (2016) Upstream regulators and downstream effectors of NF-κB in Alzheimer’s disease. J Neurol Sci 366:127–134

    Article  CAS  PubMed  Google Scholar 

  139. Lukiw WJ (2012) NF-κB-regulated, proinflammatory miRNAs in Alzheimer’s disease. Alzheimers Res Ther 4:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Terai K, Matsuo A, McGeer PL (1996) Enhancement of immunoreactivity for NF-kappa B in the hippocampal formation and cerebral cortex of Alzheimer’s disease. Brain Res 735:159–168

    Article  CAS  PubMed  Google Scholar 

  141. Ju Hwang C, Choi DY, Park MH, Hong JT (2019) NF-κB as a key mediator of brain inflammation in Alzheimer’s disease. CNS Neurol Disord Drug Targets 18:3–10

    Article  PubMed  Google Scholar 

  142. Al-Thomali AW, Al-Kuraishy HM, Al-Gareeb AI, De AKA-BM, Sabatier JM, Khan Khalil AA, Saad HM, Batiha GE (2022) Role of neuropilin 1 in COVID-19 patients with acute ischemic stroke. Biomedicines 10:2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Uddin MS, Hasana S, Ahmad J, Hossain MF, Rahman MM, Behl T, Rauf A, Ahmad A, Hafeez A, Perveen A, Ashraf GM (2021) Anti-neuroinflammatory potential of polyphenols by inhibiting NF-κB to halt Alzheimer’s disease. Curr Pharm Des 27:402–414

    Article  CAS  PubMed  Google Scholar 

  144. Seo EJ, Fischer N, Efferth T (2018) Phytochemicals as inhibitors of NF-κB for treatment of Alzheimer’s disease. Pharmacol Res 129:262–273

    Article  CAS  PubMed  Google Scholar 

  145. Kong F, Jiang X, Wang R, Zhai S, Zhang Y, Wang D (2020) Forsythoside B attenuates memory impairment and neuroinflammation via inhibition on NF-κB signaling in Alzheimer’s disease. J Neuroinflamm 17:305

    Article  CAS  Google Scholar 

  146. Al-Kuraishy HM, Al-Gareeb AI, Faidah H, Al-Maiahy TJ, Cruz-Martins N, Batiha GE (2021) The looming effects of estrogen in Covid-19: a rocky rollout. Front Nutr 8:649128

    Article  PubMed  PubMed Central  Google Scholar 

  147. Asadipooya K, Uy EM (2019) Advanced glycation end products (AGEs), receptor for AGEs, diabetes, and bone: review of the literature. J Endocr Soc 3:1799–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tsoukas MA, Farr OM, Mantzoros CS (2015) Leptin in congenital and HIV-associated lipodystrophy. Metabolism 64:47–59

    Article  CAS  PubMed  Google Scholar 

  149. Sayej WN, Knight Iii PR, Guo WA, Mullan B, Ohtake PJ, Davidson BA, Khan A, Baker RD, Baker SS (2016) Advanced glycation end products induce obesity and hepatosteatosis in CD-1 wild-type mice. Biomed Res Int 2016:7867852

    Article  PubMed  PubMed Central  Google Scholar 

  150. den Engelsen C, van den Donk M, Gorter KJ, Salomé PL, Rutten GE (2012) Advanced glycation end products measured by skin autofluorescence in a population with central obesity. Dermatoendocrinol 4:33–38

    Article  Google Scholar 

  151. Sohouli MH, Sharifi-Zahabi E, Lari A, Fatahi S, Shidfar F (2020) The impact of low advanced glycation end products diet on obesity and related hormones: a systematic review and meta-analysis. Sci Rep 10:22194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhang F, Niu L, Li S, Le W (2019) Pathological impacts of chronic hypoxia on Alzheimer’s disease. ACS Chem Neurosci 10:902–909

    Article  CAS  PubMed  Google Scholar 

  153. Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, Eckert A, Harvey J, Jeggo R, Jhamandas JH, Kann O, la Cour CM, Martin WF, Mithieux G, Moreira PI, Murphy MP, Nave KA, Nuriel T, Oliet SHR, Saudou F, Mattson MP, Swerdlow RH, Millan MJ (2020) Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 19:609–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Babusikova E, Dobrota D, Turner AJ, Nalivaeva NN (2021) Effect of global brain ischemia on amyloid precursor protein metabolism and expression of amyloid-degrading enzymes in rat cortex: role in pathogenesis of Alzheimer’s disease. Biochemistry 86:680–692

    CAS  PubMed  Google Scholar 

  155. Wu Y, Li Z, McDonough MA, Schofield CJ, Zhang X (2021) Inhibition of the oxygen-sensing asparaginyl hydroxylase factor inhibiting hypoxia-inducible factor: a potential hypoxia response modulating strategy. J Med Chem 64:7189–7209

    Article  CAS  PubMed  Google Scholar 

  156. Gaspar JM, Mendes NF, Corrêa-da-Silva F, Lima-Junior JC, Gaspar RC, Ropelle ER, Araujo EP, Carvalho HM, Velloso LA (2018) Downregulation of HIF complex in the hypothalamus exacerbates diet-induced obesity. Brain Behav Immun 73:550–561

    Article  CAS  PubMed  Google Scholar 

  157. Ashok BS, Ajith TA, Sivanesan S (2017) Hypoxia-inducible factors as neuroprotective agent in Alzheimer’s disease. Clin Exp Pharmacol Physiol 44:327–334

    Article  CAS  PubMed  Google Scholar 

  158. Lall R, Mohammed R, Ojha U (2019) What are the links between hypoxia and Alzheimer’s disease? Neuropsychiatr Dis Treat 15:1343–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Li J, Tao T, Xu J, Liu Z, Zou Z, Jin M (2020) HIF–1α attenuates neuronal apoptosis by upregulating EPO expression following cerebral ischemia–reperfusion injury in a rat MCAO model. Int J Mol Med 45:1027–1036

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Martins IJ (2016) Anti-aging genes improve appetite regulation and reverse cell senescence and apoptosis in global populations. Adv Aging Res 5:9–26. https://doi.org/10.4236/aar.2016.51002

    Article  CAS  Google Scholar 

  161. Martins IJ (2017) Single gene inactivation with implications to diabetes and multiple organ dysfunction syndrome. J Clin Epigenet 3:24. https://doi.org/10.21767/2472-1158.100058

    Article  Google Scholar 

  162. Martins I (2019) Appetite regulation and the peripheral sink amyloid beta clearance pathway in diabetes and Alzheimer’s disease. In: Top 10 commentaries in Alzheimer’s disease. Avid Sci, pp 2–11

  163. Song YS, Lee SK, Jang YJ, Park HS, Kim J-H, Lee YJ, Heo Y-S (2013) Association between low SIRT1 expression in visceral and subcutaneous adipose tissues and metabolic abnormalities in women with obesity and type 2 diabetes. Diabetes Res Clin Pract 101:341–348

    Article  CAS  PubMed  Google Scholar 

  164. Sasaki T (2015) Age-associated weight gain, leptin, and SIRT1: a possible role for hypothalamic SIRT1 in the prevention of weight gain and aging through modulation of leptin sensitivity. Front Endocrinol 6:109

    Article  Google Scholar 

  165. Maiese K (2018) Sirtuins: developing innovative treatments for aged-related memory loss and Alzheimer’s disease. Curr Neurovasc Res 15:367–371

    Article  CAS  PubMed  Google Scholar 

  166. Martins IJ (2013) Increased risk for obesity and diabetes with neurodegeneration in developing countries. J Mol Genet Med S1:001. https://doi.org/10.4172/1747-0862.S1-001

    Article  Google Scholar 

  167. Gomes BAQ, Silva JPB, Romeiro CFR, Dos Santos SM, Rodrigues CA, Gonçalves PR, Sakai JT, Mendes PFS, Varela ELP, Monteiro MC (2018) Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: role of SIRT1. Oxid Med Cell Longev 2018:8152373. https://doi.org/10.1155/2018/8152373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. San Cheang W, Wong WT, Wang L, Cheng CK, Lau CW, Ma RCW, Xu A, Wang N, Huang Y, Tian XY (2019) Resveratrol ameliorates endothelial dysfunction in diabetic and obese mice through sirtuin 1 and peroxisome proliferator-activated receptor δ. Pharmacol Res 139:384–394

    Article  Google Scholar 

  169. Bonda DJ, Stone JG, Torres SL, Siedlak SL, Perry G, Kryscio R, Jicha G, Casadesus G, Smith MA, Zhu X (2014) Dysregulation of leptin signaling in Alzheimer disease: evidence for neuronal leptin resistance. J Neurochem 128:162–172

    Article  CAS  PubMed  Google Scholar 

  170. Lieb W, Beiser AS, Vasan RS, Tan ZS, Au R, Harris TB, Roubenoff R, Auerbach S, DeCarli C, Wolf PA (2009) Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA 302:2565–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Paz-Filho GJ, Babikian T, Asarnow R, Esposito K, Erol HK, Wong M-L, Licinio J (2008) Leptin replacement improves cognitive development. PLoS ONE 3:e3098

    Article  PubMed  PubMed Central  Google Scholar 

  172. Greco SJ, Sarkar S, Johnston JM, Tezapsidis N (2009) Leptin regulates tau phosphorylation and amyloid through AMPK in neuronal cells. Biochem Biophys Res Commun 380:98–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Marwarha G, Dasari B, Prasanthi JR, Schommer J, Ghribi O (2010) Leptin reduces the accumulation of Aβ and phosphorylated tau induced by 27-hydroxycholesterol in rabbit organotypic slices. J Alzheimers Dis 19:1007–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Calió ML, Mosini AC, Marinho DS, Salles GN, Massinhani FH, Ko GM, Porcionatto MA (2021) Leptin enhances adult neurogenesis and reduces pathological features in a transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 148:105219

    Article  PubMed  Google Scholar 

  175. King A, Brain A, Hanson K, Dittmann J, Vickers J, Fernandez-Martos C (2018) Disruption of leptin signalling in a mouse model of Alzheimer’s disease. Metab Brain Dis 33:1097–1110

    Article  CAS  PubMed  Google Scholar 

  176. Shafiq S, Zahan R, Yesmin S, Khan A, Mahmud MS, Reza MA, Albogami SM, Alorabi M, De Waard M, Saad HM, Sabatier J-M, Naz T, Batiha GE-S (2022) Phytochemical analysis and understanding the antioxidant and anticancer properties of methanol extract from Litsea glutinosa: in vitro and in vivo studies. Molecules 27:6964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ng RC-L, Chan K-H (2017) Potential neuroprotective effects of adiponectin in Alzheimer’s disease. Int J Mol Sci 18:592

    Article  PubMed  PubMed Central  Google Scholar 

  178. Teixeira AL, Diniz BS, Campos AC, Miranda AS, Rocha NP, Talib LL, Gattaz WF, Forlenza OV (2013) Decreased levels of circulating adiponectin in mild cognitive impairment and Alzheimer’s disease. Neuromol Med 15:115–121

    Article  CAS  Google Scholar 

  179. Chan K-H, Lam KS-L, Cheng O-Y, Kwan JS-C, Ho PW-L, Cheng KK-Y, Chung SK, Ho JW-M, Guo VY, Xu A (2012) Adiponectin is protective against oxidative stress induced cytotoxicity in amyloid-beta neurotoxicity. PLoS ONE 7:e52354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Nova E, San Mauro-Martín I, Díaz-Prieto LE, Marcos A (2019) Wine and beer within a moderate alcohol intake is associated with higher levels of HDL-c and adiponectin. Nutr Res 63:42–50

    Article  CAS  PubMed  Google Scholar 

  181. Tong HV, Luu NK, Son HA, Hoan NV, Hung TT, Velavan TP, Toan NL (2017) Adiponectin and pro-inflammatory cytokines are modulated in Vietnamese patients with type 2 diabetes mellitus. J Diabetes Investig 8:295–305

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

HMA, AIA, AAA and ZHH conceptualized the manuscript, wrote, edited and reviewed the main text and approved the final edition of the manuscript. NAK, HMS, GE-SB and MDW prepared the figures, wrote, corrected, amended and approved the final edition of the manuscript.

Corresponding authors

Correspondence to Hebatallah M. Saad or Gaber El-Saber Batiha.

Ethics declarations

Competing Interests

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Kuraishy, H.M., Al-Gareeb, A.I., Alsayegh, A.A. et al. A Potential Link Between Visceral Obesity and Risk of Alzheimer’s Disease. Neurochem Res 48, 745–766 (2023). https://doi.org/10.1007/s11064-022-03817-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03817-4

Keywords

Navigation