Skip to main content
Log in

Bounding the Inefficiency of the Reliability-Based Continuous Network Design Problem Under Cost Recovery

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

This study defines the price of anarchy for general reliability-based transport network design problems, which is an indicator of inefficiency that reveals how much the design objective value exceeds its theoretical minimum value due to the risk averse and selfish routing behavior of travelers. This study examines a new problem, which is a reliability-based continuous network design problem under cost recovery. In this problem, the variations of system travel time and path travel times, the risk attitudes of the system manager and travelers, congestion toll charges, capacity expansions, and cost recovery constraint are explicitly considered. The design problem is formulated as a min-max problem with the reliability-based user equilibrium constraint. It is proved that the price of anarchy for this problem is bounded above, and the upper bound is independent of travel time functions, demands, and network topology. The upper bound is related to the travel time variations, the value of reliability, and the value of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdulaal M, LeBlanc LJ (1979) Continuous equilibrium network design models. Transp Res B 13(1):19–32

    Google Scholar 

  • Ben-Ayed O, Boyce DE, Blair CE III (1988) A general bilevel linear programming formulation of the network design problem. Transp Res B 22(4):311–318

    Google Scholar 

  • Brownstone D, Small KA (2003) Valuing time and reliability: assessing the evidence from road pricing demonstrations. Transp Res A 39(4):279–293

    Google Scholar 

  • Chau CK, Sim KM (2003) The price of anarchy for non-atomic congestion games with symmetric cost maps and elastic demands. Oper Res Lett 31(5):327–334

    Google Scholar 

  • Chen A, Kim J, Zhou Z, Chootinan P (2007) Alpha reliable network design problem. Transp Res Rec 2029:49–57

    Google Scholar 

  • Chen A, Zhou Z (2010) The α-reliable mean-excess traffic equilibrium model with stochastic travel times. Transp Res B 44(4):493–513

    Google Scholar 

  • Chen A, Zhou Z, Chootinan P, Ryu S, Yang C, Wong SC (2011) Transport network design problem under uncertainty: a review and new developments. Transp Rev 31(6):743–768

    Google Scholar 

  • Chiou S (2005) Bilevel programming for the continuous transport network design problem. Transp Res B 39(4):361–383

    Google Scholar 

  • Chootinan P, Wong SC, Chen A (2005) A reliability-based network design problem. J Adv Transp 39(3):247–270

    Google Scholar 

  • Chow JYJ, Regan AC (2011) Network-based real option models. Transp Res B 45(4):682–695

    Google Scholar 

  • Concas S, Kolpakov A (2009) Synthesis of research on value of time and value of reliability. http://www.nctr.usf.edu/pdf/77806.pdf

  • Correa J, Schulz A, Stier-Moses N (2004) Selfish routing in capacitated networks. Math Oper Res 29(4):961–976

    Google Scholar 

  • Dantzig GB, Maier SF, Harvey RP, Lansdowne ZF, Robinson DW (1979) Formulating and solving the network design problem by decomposition. Transp Res B 13(1):5–17

    Google Scholar 

  • Farahani RZ, Miandoabchi E, Szeto WY, Rashidi H (2013) A review of urban transportation network design problems. Eur J Oper Res 229(2):281–302

    Google Scholar 

  • Friesz TL, Anandalingam G, Mehta NJ, Nam K, Shah SJ, Tobin RL (1993) The multiobjective equilibrium network design problem revisited: a simulated annealing approach. Eur J Oper Res 65(1):44–57

    Google Scholar 

  • Guo XL, Yang H, Liu TL (2010) Bounding the inefficiency of logit-based stochastic user equilibrium. Eur J Oper Res 201(2):463–469

    Google Scholar 

  • Han D, Lo HK, Yang H (2008) On the price of anarchy for non-atomic congestion games under asymmetric cost maps and elastic demands. Comput Math Appl 56(10):2737–2743

    Google Scholar 

  • Han D, Yang H (2008) The multi-class, multi-criterion traffic equilibrium and the efficiency of congestion pricing. Transp Res E 44(5):753–773

    Google Scholar 

  • Huang HJ, Liu TL, Guo XL, Yang H (2011) Inefficiency of logit-based stochastic user equilibrium in a traffic network under ATIS. Netw Spat Econ 11(2):255–269

    Google Scholar 

  • Ji XF, Ban XG, Li MT, Zhang J, Ran B (2017) Non-expected route choice model under risk on stochastic traffic networks. Netw Spat Econ 17(3):777–807

    Google Scholar 

  • Khani A, Boyles SD (2015) An exact algorithm for the mean-standard deviation shortest path problem. Transp Res B 81:252–266

    Google Scholar 

  • Koutsoupias E, Papadimitriou C (1999) Worst-case equilibria. In: Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science (STACS): Trier, Germany, Lecture Notes in Computer Science, vol 1563. Springer, Berlin, pp 404–413

    Google Scholar 

  • LeBlanc LJ, Boyce DE (1986) A bilevel programming algorithm for exact solution of the network design problem with user-optimal flows. Transp Res B 20(3):259–265

    Google Scholar 

  • Liu ZY, Yi W, Wang SA, Chen J (2017) On the uniqueness of user equilibrium flow with speed limit. Netw Spat Econ 17(3):763–775

    Google Scholar 

  • Lo HK, Luo XW, Siu BWY (2006) Degradable transport network: travel time budget of travelers with heterogeneous risk aversion. Transp Res B 40(9):792–806

    Google Scholar 

  • Lo HK, Szeto WY (2009) Time-dependent transport network design under cost-recovery. Transp Res B 43(1):142–158

    Google Scholar 

  • Meng Q, Yang H (2002) Benefit distribution and equity in road network design. Transp Res B 36(1):19–35

    Google Scholar 

  • Ng MW, Waller ST (2009) Reliable system-optimal network design: convex mean-variance model with implicit chance constraints. Transp Res Rec 2090:68–74

    Google Scholar 

  • Roughgarden T (2005) Selfish routing and price of anarchy. MIT Press, Cambridge

    Google Scholar 

  • Roughgarden T, Tardos E (2002) How bad is selfish routing? J ACM 49(2):236–259

    Google Scholar 

  • Shao H, Lam WHK, Tam ML (2006) A reliability-based stochastic traffic assignment model for network with multiple user classes under uncertainty in demand. Netw Spat Econ 6(3):173–204

    Google Scholar 

  • Small KA, Yan J (2001) The value of “value pricing” of roads: second-best pricing and product differentiation. J Urban Econ 49:310–336

    Google Scholar 

  • Sumalee A, Luathep P, Lam WHK, Connors RD (2009) Transport network capacity evaluation and design under demand uncertainty. Transp Res Rec 2090:17–28

    Google Scholar 

  • Szeto WY, Jaber XQ, O’Mahony M (2010) Time-dependent discrete network design frameworks considering land use. Computer-Aided Civil and Infrastructure Engineering 25(6):411–426

    Google Scholar 

  • Szeto WY, Lo HK (2005) Strategies for road network design over time: robustness under uncertainty. Transportmetrica 1(1):47–63

    Google Scholar 

  • Szeto WY, Lo HK (2008) Time-dependent transport network improvement and tolling strategies. Transp Res A 42(2):376–391

    Google Scholar 

  • Szeto WY, Wang B (2015) Price of anarchy for reliability-based traffic assignment and network design. Transportmetrica A: Transport Science 11(7):603–635

    Google Scholar 

  • Szeto WY, Wang B (2016) Reliable network design under supply uncertainty with probabilistic guarantees. Transportmetrica A: Transport Science 12(6):504–532

    Google Scholar 

  • Szeto WY, Wang Y, Wong SC (2014) The chemical reaction optimization approach to solving the environmentally sustainable network design problem. Computer-Aided Civil and Infrastructure Engineering 29(2):140–158

    Google Scholar 

  • Tilahun N, Levinson DM (2009) Value of time comparisons in the presence of unexpected delay. In: Saleh W, Sammer G (eds) Travel Demand Management and Road User Pricing: Success, Failure and Feasibility. Ashgate Publishers, Farnham, pp 173–184

    Google Scholar 

  • Wang B, Szeto WY (2018) Reliability-based user equilibrium in a transport network under the effects of speed limits and supply uncertainty. Appl Math Model 56:186–201

    Google Scholar 

  • Wang CL, Doan XV, Chen B (2014) Price of anarchy for non-atomic congestion games with stochastic demands. Transp Res B 70:90–111

    Google Scholar 

  • Wardrop JG (1952) Some theoretical aspects of road traffic research. ICE Proceedings: Engineering Divisions 1(3):325–362

    Google Scholar 

  • Wu X (2015) Study on mean-standard deviation shortest path problem in stochastic and time-dependent networks: A stochastic dominance based approach. Transp Res B 80(9):275–290

    Google Scholar 

  • Wu X, Nie Y (2011) Modeling heterogeneous risk-taking behavior in route choice: a stochastic dominance approach. Transp Res A 45(9):896–915

    Google Scholar 

  • Xiao F, Yang H, Han D (2007) Competition and efficiency of private toll roads. Transp Res B 41(3):292–308

    Google Scholar 

  • Yang H (1997) Sensitivity analysis for the elastic-demand network equilibrium problem with applications. Transp Res B 31(1):55–70

    Google Scholar 

  • Yang H, Bell MGH (1998) Models and algorithms for road network design: a review and some new developments. Transp Rev 18(3):257–278

    Google Scholar 

  • Yang H, Meng Q (2002) A note on “highway pricing and capacity choice in a road network under a build-operate-transfer scheme”. Transp Res A 36(7):659–663

    Google Scholar 

  • Yin YF, Madanat SM, Lu XY (2009) Robust improvement schemes for road networks under demand uncertainty. Eur J Oper Res 198(2):470–479

    Google Scholar 

  • Zhao XM, Wan CH, Bi J (2018) Day-to-day assignment models and traffic dynamics under information provision. Netw Spat Econ. https://doi.org/10.1007/s11067-018-9386-1

Download references

Acknowledgments

This work was jointly supported by a grant [No. 201711159034] from the University Research Committee of the University of Hong Kong, a grant from the National Natural Science Foundation of China [No. 71771194], and a grant from the Guangzhou Science Technology and Innovation Commission [No. 201707010292]. The authors are grateful to the Editor-in-Chief and two reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Y. Szeto.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Lemma 1 and its Proof

Lemma 1

For any link flow pattern \( {\mathbf{v}}^{\prime }={\left({v}_a^{\prime}\right)}_{a\in A} \), the following inequality holds:

$$ {\displaystyle \begin{array}{l}\sum \limits_{a\in A}\left({R}^{\mathrm{t}}{t}_a\left({v}_a^{RUE},{y}_a^{RUE}\right)+{\tau}_a\Big({v}_a^{RUE},{y}_a^{RUE}\left)-{R}^{\mathrm{t}}{t}_a\right({v}_a^{\prime },{y}_a^{RUE}\Big)\right){v}_a^{\prime}\\ {}\le \sum \limits_{a\in A}{\tau}_a\left({v}_a^{RUE},{y}_a^{RUE}\right)\cdot {v}_a^{RUE},\end{array}} $$
(20)

where \( {v}_a^{RUE} \) and \( {y}_a^{RUE} \) denote the entries of vRUE(fRUE) and yRUE, respectively.

Proof

For an individual link a ∈ A, consider the following maximization problem:

$$ \underset{x_a\ge 0}{\min }{\overline{Z}}_a\left({x}_a\right)={R}^{\mathrm{t}}\left({t}_a\left({v}_a^{RUE},{y}_a^{RUE}\right)+{v}_a^{RUE}{dt}_a\Big({v}_a^{RUE},{y}_a^{RUE}\left)/{dv}_a-{t}_a\right({x}_a,{y}_a^{RUE}\Big)\right){x}_a. $$

The first order derivative of \( {\overline{Z}}_a\left({x}_a\right) \) with respect to xa is

$$ {\displaystyle \begin{array}{l}d{\overline{Z}}_a\left({x}_a\right)/{dx}_a=\\ {}{R}^{\mathrm{t}}\left({t}_a\left({v}_a^{RUE},{y}_a^{RUE}\right)+{v}_a^{RUE}{dt}_a\Big({v}_a^{RUE},{y}_a^{RUE}\left)/{dv}_a-{t}_a\right({x}_a,{y}_a^{RUE}\left)-{x}_a{dt}_a\right({x}_a,{y}_a^{RUE}\Big)/{dv}_a\right).\end{array}} $$

Because of the properties of the link travel time function and the marginal link cost toll function, the following hold: \( d{\overline{Z}}_a\left({x}_a\right)/{dx}_a>0 \) for \( 0\le {x}_a<{v}_a^{RUE} \); \( d{\overline{Z}}_a\left({x}_a\right)/{dx}_a=0 \) for \( {x}_a={v}_a^{RUE} \), and \( d{\overline{Z}}_a\left({x}_a\right)/{dx}_a<0 \) for \( {x}_a>{v}_a^{RUE} \). The objective function \( {\overline{Z}}_a\left({x}_a\right) \) is strictly increasing on \( \left[0,{v}_a^{RUE}\right] \) and strictly decreasing on \( \left({v}_a^{RUE},+\infty \right) \). If \( {v}_a^{RUE} \) equals zero, \( d{\overline{Z}}_a\left({x}_a\right)/{dx}_a=0 \) at xa = 0 and \( d{\overline{Z}}_a\left({x}_a\right)/{dx}_a<0 \) for xa > 0. The function \( {\overline{Z}}_a\left({x}_a\right) \) is strictly decreasing on [0, +∞). The global maximum point \( {x}_a^{\ast } \) of the objective function exists and is unique, and satisfies the condition: \( d{\overline{Z}}_a\left({x}_a^{\ast}\right)/{dx}_a=0 \), i.e., \( {x}_a^{\ast }>{v}_a^{RUE} \).

Substituting the global maximum point \( {x}_a^{\ast } \) into the objective function \( {\overline{Z}}_a\left({x}_a\right) \), the maxima of the objective function is

$$ {\displaystyle \begin{array}{c}{\overline{Z}}_a\left({x}_a^{\ast}\right)={R}^{\mathrm{t}}\left({t}_a\left({v}_a^{RUE},{y}_a^{RUE}\right)+{v}_a^{RUE}{dt}_a\Big({v}_a^{RUE},{y}_a^{RUE}\left)/{dv}_a-{t}_a\right({v}_a^{RUE},{y}_a^{RUE}\Big)\right){v}_a^{RUE}\\ {}={R}^{\mathrm{t}}{v}_a^{RUE}{v}_a^{RUE}\cdot {dt}_a\left({v}_a^{RUE},{y}_a^{RUE}\right)/{dv}_a={\tau}_a\left({v}_a^{RUE},{y}_a^{RUE}\right)\cdot {v}_a^{RUE}.\end{array}} $$

Thus, given a feasible link flow \( {v}_a^{\prime } \), the following inequality holds:

$$ {\displaystyle \begin{array}{c}{\overline{Z}}_a\left({v}_a^{\prime}\right)={R}^{\mathrm{t}}\left({t}_a\left({v}_a^{RUE},{y}_a^{RUE}\right)+{v}_a^{RUE}{dt}_a\Big({v}_a^{RUE},{y}_a^{RUE}\left)/{dv}_a-{t}_a\right({v}_a^{\prime },{y}_a^{RUE}\Big)\right){v}_a^{\prime}\\ {}=\left({R}^{\mathrm{t}}{t}_a\left({v}_a^{RUE},{y}_a^{RUE}\right)+{\tau}_a\Big({v}_a^{RUE},{y}_a^{RUE}\left)-{R}^{\mathrm{t}}{t}_a\right({v}_a^{\prime },{y}_a^{RUE}\Big)\right){v}_a^{\prime}\\ {}\le {\tau}_a\left({v}_a^{RUE},{y}_a^{RUE}\right)\cdot {v}_a^{RUE}.\end{array}} $$
(21)

Condition (21) holds for any individual link in the road network. Summing up condition (21) over all links on a path, the result (20) in the lemma is obtained.

Appendix 2: Upper Bounds of TSTCB and Sum of Individual Path Travel Cost Budgets

Based on the formula relating the path and link travel time standard deviation, the path travel time standard deviation is smaller than or equal to the sum of link travel time standard deviations of links on that path, i.e., \( {\varsigma}_p\le \sum \limits_{a\in A}{\sigma}_a{\delta}_p^a \). Similarly, \( \sigma \left[ TSTT\right]\le \sum \limits_{a\in A}{\sigma}_a{v}_a \). According to the definition of εmax, we have \( {\varsigma}_p\le \sum \limits_{a\in A}{\varepsilon}_{\mathrm{max}}{t}_a{\delta}_p^a \) and \( \sigma \left[ TSTT\right]\le \sum \limits_{a\in A}{\varepsilon}_{\mathrm{max}}{t}_a{v}_a \).

Because \( \sigma \left[ TSTT\right]\le \sum \limits_{a\in A}{\varepsilon}_{\mathrm{max}}{t}_a{v}_a \), it can easily be proved that the TSTCB has an upper bound, which is the mean TSTT multiplied by a number:

$$ {TSTCB}_{R^{\mathrm{t}},{R}^{\mathrm{s}}}\left(\mathbf{v}\left(\mathbf{f}\right),\mathbf{y}\right)\le \left({R}^{\mathrm{t}}+{\varepsilon}_{\mathrm{max}}{R}^{\mathrm{s}}\right)\sum \limits_{a\in A}{t}_a\left({v}_a,{y}_a\right)\cdot {v}_a. $$
(22)

Similar to the sum of individual path travel cost budgets, we have

$$ \sum \limits_{p\in P}{f}_p{b}_p\left(\mathbf{v}\left(\mathbf{f}\right),\mathbf{y}\right)\le \left({R}^{\mathrm{t}}+{\varepsilon}_{\mathrm{max}}{R}^{\mathrm{u}}\right)\sum \limits_{a\in A}{t}_a\left({v}_a,{y}_a\right)\cdot {v}_a. $$
(23)

Note that \( \sum \limits_{p\in P}{f}_p{b}_p\left(\mathbf{v}\left(\mathbf{f}\right),\mathbf{y}\right)={R}^{\mathrm{t}}\sum \limits_{a\in A}{t}_a\left({v}_a,{y}_a\right)\cdot {v}_a+{R}^{\mathrm{u}}\sum \limits_{p\in P}{f}_p\cdot {\varsigma}_p \).

Appendix 3: Proof of Property 1

Proof

Assume \( {\mathbf{v}}^{{\prime\prime\prime}}\left({\mathbf{f}}^{{\prime\prime\prime}}\right)={\left({v}_a^{{\prime\prime\prime}}\right)}_{a\in A} \) is the link flow pattern of the path flow pattern \( {\mathbf{f}}^{{\prime\prime\prime} }={\left({f}_p^{{\prime\prime\prime}}\right)}_{p\in P} \) that minimizes the sum of individual path travel cost budgets. Let \( {\varsigma}_p^{RUE} \) and \( {\varsigma}_p^{{\prime\prime\prime} } \) be the path travel time standard deviations of fRUE and f, respectively. Let \( {\tau}_a^{RUE}={\tau}_a\left({v}_a^{RUE},{y}_a^{RUE}\right) \), \( {\tau}_a^{{\prime\prime\prime} }={\tau}_a\left({v}_a^{{\prime\prime\prime} },{y}_a^{RUE}\right) \), \( {t}_a^{RUE}={t}_a\left({v}_a^{RUE},{y}_a^{RUE}\right) \), \( {t}_a^{{\prime\prime\prime} }={t}_a\left({v}_a^{{\prime\prime\prime} },{y}_a^{RUE}\right) \), \( {q}_p^{RUE}=\sum \limits_{a\in A}{t}_a^{RUE}{\delta}_p^a \), \( {q}_p^{{\prime\prime\prime} }=\sum \limits_{a\in A}{t}_a^{{\prime\prime\prime} }{\delta}_p^a \), \( {\tilde{b}}_p^{RUE}={b}_p^{RUE}+\sum \limits_{a\in A}{\tau}_a^{RUE}{\delta}_p^a \), and \( {{\tilde{b}}^{{\prime\prime\prime}}}_p={b}_p^{{\prime\prime\prime} }+\sum \limits_{a\in A}{\tau}_a^{{\prime\prime\prime} }{\delta}_p^a \).

Because fRUE is the RUE path flow pattern, the following inequality holds: \( \sum \limits_{p\in P}\left({f}_p^{{\prime\prime\prime} }-{f}_p^{RUE}\right){\tilde{b}}_p^{RUE}\ge 0 \) (for details, see the solution method in Sub-section 2.7 in the study of Szeto and Wang 2016), which is equivalent to \( \sum \limits_{p\in P}{\tilde{b}}_p^{RUE}{f}_p^{RUE}\le \sum \limits_{p\in P}{\tilde{b}}_p^{RUE}{f}_p^{{\prime\prime\prime} } \). Subtracting \( \sum \limits_{p\in P}{{\tilde{b}}^{{\prime\prime\prime}}}_p{f}_p^{{\prime\prime\prime} } \) from both sides of the above inequality, we obtain \( \sum \limits_{p\in P}{\tilde{b}}_p^{RUE}{f}_p^{RUE}-\sum \limits_{p\in P}{{\tilde{b}}^{{\prime\prime\prime}}}_p{f}_p^{{\prime\prime\prime}}\le \sum \limits_{p\in P}\left({\tilde{b}}_p^{RUE}-{{\tilde{b}}^{{\prime\prime\prime}}}_p\right){f}_p^{{\prime\prime\prime} } \), which can be rewritten as

$$ {\displaystyle \begin{array}{l}\sum \limits_{p\in P}{b}_p^{RUE}{f}_p^{RUE}+\sum \limits_{p\in P}\left({\sum}_{a\in A}{\tau}_a^{RUE}{\delta}_p^a\right){f}_p^{RUE}-\sum \limits_{p\in P}{b}_p^{{\prime\prime\prime} }{f}_p^{{\prime\prime\prime} }-\sum \limits_{p\in P}\left({\sum}_{a\in A}{\tau}_a^{RUE}{\delta}_p^a\right){f}_p^{{\prime\prime\prime}}\le \\ {}{R}^{\mathrm{t}}\sum \limits_{p\in P}\left({q}_p^{RUE}-{q}_p^{{\prime\prime\prime}}\right){f}_p^{{\prime\prime\prime} }+{R}^{\mathrm{u}}\sum \limits_{p\in P}\left({\varsigma}_p^{RUE}-{\varsigma}_p^{{\prime\prime\prime}}\right){f}_p^{{\prime\prime\prime} }+\sum \limits_{p\in P}\left({\sum}_{a\in A}{\tau}_a^{RUE}{\delta}_p^a-{\sum}_{a\in A}{\tau}_a^{{\prime\prime\prime} }{\delta}_p^a\right){f}_p^{{\prime\prime\prime} },\end{array}} $$

or

$$ {\displaystyle \begin{array}{c}\sum \limits_{p\in P}{b}_p^{RUE}{f}_p^{RUE}-\sum \limits_{p\in P}{b}_p^{{\prime\prime\prime} }{f}_p^{{\prime\prime\prime}}\\ {}\le \left[{R}^{\mathrm{t}}\sum \limits_{p\in P}\left({q}_p^{RUE}-{q}_p^{{\prime\prime\prime}}\right){f}_p^{{\prime\prime\prime} }+\sum \limits_{p\in P}\left({\sum}_{a\in A}{\tau}_a^{RUE}{\delta}_p^a\right){f}_p^{{\prime\prime\prime} }-\sum \limits_{p\in P}\left({\sum}_{a\in A}{\tau}_a^{RUE}{\delta}_p^a\right){f}_p^{RUE}\right]\\ {}+{R}^{\mathrm{u}}\sum \limits_{p\in P}\left({\varsigma}_p^{RUE}-{\varsigma}_p^{{\prime\prime\prime}}\right){f}_p^{{\prime\prime\prime} }.\end{array}} $$
(24)

For the term in the square bracket on the right side of (24), we have: \( {R}^{\mathrm{t}}\sum \limits_{p\in P}\left({q}_p^{RUE}-{q}_p^{{\prime\prime\prime}}\right){f}_p^{{\prime\prime\prime} }={R}^{\mathrm{t}}\sum \limits_{a\in A}\left({t}_a^{RUE}-{t}_a^{{\prime\prime\prime}}\right){v}_a^{{\prime\prime\prime} } \), \( \sum \limits_{p\in P}\left({\sum}_{a\in A}{\tau}_a^{RUE}{\delta}_p^a\right){f}_p^{{\prime\prime\prime} }=\sum \limits_{a\in A}{\tau}_a^{RUE}{v}_a^{{\prime\prime\prime} } \), and \( \sum \limits_{p\in P}\left({\sum}_{a\in A}{\tau}_a^{RUE}{\delta}_p^a\right){f}_p^{RUE}=\sum \limits_{a\in A}{\tau}_a^{RUE}{v}_a^{RUE} \). Thus, the term in the square bracket in (24) can be expressed in terms of link-based variables:

$$ {\displaystyle \begin{array}{l}\left[{R}^{\mathrm{t}}\sum \limits_{p\in P}\left({q}_p^{RUE}-{q}_p^{{\prime\prime\prime}}\right){f}_p^{{\prime\prime\prime} }+\sum \limits_{p\in P}\left({\sum}_{a\in A}{\tau}_a^{RUE}{\delta}_p^a\right){f}_p^{{\prime\prime\prime} }-\sum \limits_{p\in P}\left({\sum}_{a\in A}{\tau}_a^{RUE}{\delta}_p^a\right){f}_p^{RUE}\right]=\\ {}\sum \limits_{a\in A}\left({R}^{\mathrm{t}}{t}_a^{RUE}-{R}^{\mathrm{t}}{t}_a^{{\prime\prime\prime} }+{\tau}_a^{RUE}\right){v}_a^{{\prime\prime\prime} }-\sum \limits_{a\in A}{\tau}_a^{RUE}{v}_a^{RUE}.\end{array}} $$
(25)

According to Lemma 1 in Appendix 1, the first term on the right side of inequality (25) is smaller than or equal to \( \sum \limits_{a\in A}{\tau}_a^{RUE}{v}_a^{RUE} \). Thus, the right side of (25) is smaller than or equal to zero. Because the term in the square bracket in (24) is smaller than or equal to zero, the left side of (24) is smaller than or equal to the second term on the right side of (24):

$$ \sum \limits_{p\in P}{b}_p^{RUE}{f}_p^{RUE}-\sum \limits_{p\in P}{b}_p^{{\prime\prime\prime} }{f}_p^{{\prime\prime\prime}}\le 0+{R}^{\mathrm{u}}\sum \limits_{p\in P}\left({\varsigma}_p^{RUE}-{\varsigma}_p^{{\prime\prime\prime}}\right){f}_p^{{\prime\prime\prime} }. $$
(26)

It is assumed that the mapping ς = (ςp)p ∈ P is monotone in terms of path flow f. Thus, the following holds:

$$ {R}^{\mathrm{u}}\sum \limits_{p\in P}\left({\varsigma}_p^{{\prime\prime\prime} }-{\varsigma}_p^{RUE}\right)\left({f}_p^{RUE}-{f}_p^{{\prime\prime\prime}}\right)\le 0, $$

or equivalently,

$$ {R}^{\mathrm{u}}\sum \limits_{p\in P}{\varsigma}_p^{\prime \prime \prime }{f}_p^{RUE}+{R}^{\mathrm{u}}\sum \limits_{p\in P}\left({\varsigma}_p^{RUE}-{\varsigma}_p^{\prime \prime \prime}\right){f}_p^{\prime \prime \prime}\le {R}^{\mathrm{u}}\sum \limits_{p\in P}{\varsigma}_p^{RUE}{f}_p^{RUE}. $$

Eliminating the non-negative term \( {R}^{\mathrm{u}}\sum \limits_{p\in P}{\varsigma}_p^{{\prime\prime\prime} }{f}_p^{RUE} \) from the above inequality, the inequality still holds, i.e.,

$$ {R}^{\mathrm{u}}\sum \limits_{p\in P}\left({\varsigma}_p^{RUE}-{\varsigma}_p^{{\prime\prime\prime}}\right){f}_p^{{\prime\prime\prime}}\le {R}^{\mathrm{u}}\sum \limits_{p\in P}{\varsigma}_p^{RUE}{f}_p^{RUE}. $$
(27)

Based on inequalities (26) and (27), the following is true:

$$ \sum \limits_{p\in P}{b}_p^{RUE}{f}_p^{RUE}-\sum \limits_{p\in P}{b^{{\prime\prime\prime} }{f}^{{\prime\prime\prime}}}_p\le {R}^{\mathrm{u}}\sum \limits_{p\in P}{\varsigma}_p^{RUE}{f}_p^{RUE}. $$
(28)

Based on (23), the following inequality holds:

$$ \sum \limits_{p\in P}{f}_p{b}_p\le \left({R}^{\mathrm{t}}+{\varepsilon}_{\mathrm{max}}{R}^{\mathrm{u}}\right)\cdot \frac{1}{R^{\mathrm{t}}}\cdot \left(\sum \limits_{p\in P}{f}_p{b}_p-{R}^{\mathrm{u}}\sum \limits_{p\in P}{f}_p\cdot {\varsigma}_p\right), $$

or equivalently,

$$ {R}^{\mathrm{u}}\sum \limits_{p\in P}{f}_p\cdot {\varsigma}_p\le \left(1-\frac{R^{\mathrm{t}}}{R^{\mathrm{t}}+{\varepsilon}_{\mathrm{max}}{R}^{\mathrm{u}}}\right)\sum \limits_{p\in P}{f}_p{b}_p. $$

Based on the above, the following inequality holds:

$$ {R}^{\mathrm{u}}\sum \limits_{p\in P}{\varsigma}_p^{RUE}{f}_p^{RUE}\le \left({R}^{\mathrm{u}}{\varepsilon}_{\mathrm{max}}/\left({R}^{\mathrm{t}}+{R}^{\mathrm{u}}{\varepsilon}_{\mathrm{max}}\right)\right)\sum \limits_{p\in P}{b}_p^{RUE}{f}_p^{RUE}. $$

The right side of the above inequality is an upper bound of the right side of (28) and thus is an upper bound of the left side of (28), which gives

$$ \sum \limits_{p\in P}{b}_p^{RUE}{f}_p^{RUE}-\sum \limits_{p\in P}{b}_p^{{\prime\prime\prime} }{f}_p^{{\prime\prime\prime}}\le \left({R}^{\mathrm{u}}{\varepsilon}_{\mathrm{max}}/\left({R}^{\mathrm{t}}+{R}^{\mathrm{u}}{\varepsilon}_{\mathrm{max}}\right)\right)\sum \limits_{p\in P}{b}_p^{RUE}{f}_p^{RUE}, $$

which further gives

$$ \sum \limits_{p\in P}{b}_p^{RUE}{f}_p^{RUE}/\sum \limits_{p\in P}{b}_p^{{\prime\prime\prime} }{f}_p^{{\prime\prime\prime}}\le 1/\left(1-\left({R}^{\mathrm{u}}{\varepsilon}_{\mathrm{max}}/\left({R}^{\mathrm{t}}+{R}^{\mathrm{u}}{\varepsilon}_{\mathrm{max}}\right)\right)\right)=1+\left({R}^{\mathrm{u}}{\varepsilon}_{\mathrm{max}}/{R}^{\mathrm{t}}\right). $$

This completes the proof. ■.

Appendix 4: Proof of Property 2

Proof

Assume \( {\mathbf{v}}^{{\prime\prime}}\left({\mathbf{f}}^{{\prime\prime}}\right)={\left({v}_a^{{\prime\prime}}\right)}_{a\in A} \) is the link flow pattern of the path flow pattern \( {\mathbf{f}}^{{\prime\prime} }={\left({f}_p^{{\prime\prime}}\right)}_{p\in P} \) that minimizes the TSTCB given yRUE. Let \( {b}_p^{{\prime\prime} }={b}_p\left({\mathbf{v}}^{{\prime\prime}}\left({\mathbf{f}}^{{\prime\prime}}\right),{\mathbf{y}}^{RUE}\right) \).

By definition, the sum of individual path travel cost budgets is larger than or equal to the monetary value of mean TSTT, i.e.,

$$ {R}^{\mathrm{t}}\sum \limits_{a\in A}{t}_a^{RUE}{v}_a^{RUE}\le \sum \limits_{p\in P}{b}_p^{RUE}{f}_p^{RUE}. $$

Multiplying both sides of the above inequality by (1 + εmaxRs/Rt), the inequality still holds. That is,

$$ \left({R}^{\mathrm{t}}+{\varepsilon}_{\mathrm{max}}{R}^{\mathrm{s}}\right)\sum \limits_{a\in A}{t}_a^{RUE}{v}_a^{RUE}\le \left(1+{\varepsilon}_{\mathrm{max}}{R}^{\mathrm{s}}/{R}^{\mathrm{t}}\right)\sum \limits_{p\in P}{b}_p^{RUE}{f}_p^{RUE}. $$

The left side of above inequality is an upper bound of the TSTCB according to (22) in Appendix 2. Thus, the right side of the above inequality is larger than or equal to \( {TSTCB}_{R^{\mathrm{t}},{R}^{\mathrm{s}}}\left({\mathbf{v}}^{RUE}\left({\mathbf{f}}^{RUE}\right),{\mathbf{y}}^{RUE}\right) \), i.e.,

$$ {TSTCB}_{R^{\mathrm{t}},{R}^{\mathrm{s}}}\left({\mathbf{v}}^{RUE}\left({\mathbf{f}}^{RUE}\right),{\mathbf{y}}^{RUE}\right)\le \left(1+{\varepsilon}_{\mathrm{max}}{R}^{\mathrm{s}}/{R}^{\mathrm{t}}\right)\sum \limits_{p\in P}{b}_p^{RUE}{f}_p^{RUE}. $$
(29)

Similarly, the following inequality holds:

$$ \left({R}^{\mathrm{t}}+{\varepsilon}_{\mathrm{max}}{R}^{\mathrm{u}}\right)\sum \limits_{a\in A}{t}_a^{{\prime\prime} }{v}_a^{{\prime\prime}}\le \left(1+{\varepsilon}_{\mathrm{max}}{R}^{\mathrm{u}}/{R}^{\mathrm{t}}\right){TSTCB}_{R^{\mathrm{t}},{R}^{\mathrm{s}}}\left({\mathbf{v}}^{{\prime\prime}}\left({\mathbf{f}}^{{\prime\prime}}\right),{\mathbf{y}}^{RUE}\right). $$

The left side of the above inequality is an upper bound of the sum of individual path travel cost budgets according to (23) in Appendix 2. Thus, the right side of the above inequality is larger than or equal to \( \sum \limits_{p\in P}{b}_p^{{\prime\prime} }{f}_p^{{\prime\prime} } \), which further gives

$$ {TSTCB}_{R^{\mathrm{t}},{R}^{\mathrm{s}}}\left({\mathbf{v}}^{{\prime\prime}}\left({\mathbf{f}}^{{\prime\prime}}\right),{\mathbf{y}}^{RUE}\right)\ge \left(\sum \limits_{p\in P}{b}_p^{{\prime\prime} }{f}_p^{{\prime\prime}}\right)/\left(1+{\varepsilon}_{\mathrm{max}}{R}^{\mathrm{u}}/{R}^{\mathrm{t}}\right). $$
(30)

Dividing the left side of (29) by the left side of (30), and dividing the right side of (29) by the right side of (30), we obtain the following inequality:

$$ \frac{TSTCB_{R^{\mathrm{t}},{R}^{\mathrm{s}}}\left({\mathbf{v}}^{RUE}\left({\mathbf{f}}^{RUE}\right),{\mathbf{y}}^{RUE}\right)}{TSTCB_{R^{\mathrm{t}},{R}^{\mathrm{s}}}\left({\mathbf{v}}^{{\prime\prime}}\left({\mathbf{f}}^{{\prime\prime}}\right),{\mathbf{y}}^{RUE}\right)}\le \frac{\sum \limits_{p\in P}{b}_p^{RUE}{f}_p^{RUE}}{\sum \limits_{p\in P}{b}_p^{{\prime\prime} }{f}_p^{{\prime\prime} }}\left(1+{\varepsilon}_{\mathrm{max}}{R}^{\mathrm{s}}/{R}^{\mathrm{t}}\right)\left(1+{\varepsilon}_{\mathrm{max}}{R}^{\mathrm{u}}/{R}^{\mathrm{t}}\right). $$
(31)

In (31), \( \sum \limits_{p\in P}{b}_p^{{\prime\prime} }{f}_p^{{\prime\prime} } \) is larger than \( \sum \limits_{p\in P}{b}_p^{{\prime\prime\prime} }{f}_p^{{\prime\prime\prime} } \) defined in Property 1, because \( \sum \limits_{p\in P}{b}_p^{{\prime\prime\prime} }{f}_p^{{\prime\prime\prime} } \) is the minimum sum of individual path travel cost budgets given yRUE. Thus,

$$ \sum \limits_{p\in P}{b}_p^{RUE}{f}_p^{RUE}/\sum \limits_{p\in P}{b}_p^{{\prime\prime} }{f}_p^{{\prime\prime}}\le \sum \limits_{p\in P}{b}_p^{RUE}{f}_p^{RUE}/\sum \limits_{p\in P}{b}_p^{{\prime\prime\prime} }{f}_p^{{\prime\prime\prime} }. $$

Together with Property 1, we obtain the following inequality:

$$ \sum \limits_{p\in P}{b}_p^{RUE}{f}_p^{RUE}/\sum \limits_{p\in P}{b}_p^{{\prime\prime} }{f}_p^{{\prime\prime}}\le 1+{\varepsilon}_{\mathrm{max}}{R}^{\mathrm{u}}/{R}^{\mathrm{t}}. $$
(32)

Inequalities (31) and (32) indicate that the left side of (31) is smaller than or equal to (1 + εmaxRs/Rt)(1 + εmaxRu/Rt)2. This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A.B., Szeto, W.Y. Bounding the Inefficiency of the Reliability-Based Continuous Network Design Problem Under Cost Recovery. Netw Spat Econ 20, 395–422 (2020). https://doi.org/10.1007/s11067-019-09478-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-019-09478-1

Keywords

Navigation