Skip to main content
Log in

Routine Pattern Discovery and Anomaly Detection in Individual Travel Behavior

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

Discovering patterns and detecting anomalies in individual travel behavior is a crucial problem in both research and practice. In this paper, we address this problem by building a probabilistic framework to model individual spatiotemporal travel behavior data (e.g., trip records and trajectory data). We develop a two-dimensional latent Dirichlet allocation (LDA) model to characterize the generative mechanism of spatiotemporal trip records of each traveler. This model introduces two separate factor matrices for the spatial dimension and the temporal dimension, respectively, and use a two-dimensional core structure at the individual level to effectively model the joint interactions and complex dependencies. This model can efficiently summarize travel behavior patterns on both spatial and temporal dimensions from very sparse trip sequences in an unsupervised way. In this way, complex travel behavior can be modeled as a mixture of representative and interpretable spatiotemporal patterns. By applying the trained model on future/unseen spatiotemporal records of a traveler, we can detect her behavior anomalies by scoring those observations using perplexity. We demonstrate the effectiveness of the proposed modeling framework on a real-world license plate recognition (LPR) data set. The results confirm the advantage of statistical learning methods in modeling sparse individual travel behavior data. This type of pattern discovery and anomaly detection applications can provide useful insights for traffic monitoring, law enforcement, and individual travel behavior profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Ahas R, Aasa A, Silm S, Tiru M (2010) Daily rhythms of suburban commuters’ movements in the tallinn metropolitan area: Case study with mobile positioning data. Transp Res Part C Emerg Technol 18(1):45–54

    Article  Google Scholar 

  • Axhausen KW, Zimmermann A, Schönfelder S, Rindsfüser G, Haupt T (2002) Observing the rhythms of daily life: a six-week travel diary. Transportation 29(2):95–124

    Article  Google Scholar 

  • Baratchi M, Meratnia N, Havinga PJ, Skidmore AK, Toxopeus BA (2014) A hierarchical hidden semi-Markov model for modeling mobility data. In: Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing, pp 401–412

  • Barbosa H, Barthelemy M, Ghoshal G, James CR, Lenormand M, Louail T, Menezes R, Ramasco JJ, Simini F, Tomasini M (2018) Human mobility: Models and applications. Phys Rep 734:1–74

    Article  Google Scholar 

  • Bertini RL, Lasky M, Monsere CM (2005) Validating predicted rural corridor travel times from an automated license plate recognition system: Oregon’s frontier project. In: Proceedings of the 2005 IEEE intelligent transportation systems conference, pp 296–301

  • Bhat CR, Singh SK (2000) A comprehensive daily activity-travel generation model system for workers. Transp Res A Policy Pract 34(1):1–22

    Article  Google Scholar 

  • Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022

    Google Scholar 

  • Bowman JL, Ben-Akiva ME (2001) Activity-based disaggregate travel demand model system with activity schedules. Transp Res A Policy Pract 35 (1):1–28

    Article  Google Scholar 

  • Buliung RN, Roorda MJ, Remmel TK (2008) Exploring spatial variety in patterns of activity-travel behaviour: initial results from the Toronto Travel-Activity Panel Survey (TTAPS). Transportation 35(6):697

    Article  Google Scholar 

  • Castillo E, Menéndez JM, Jiménez P (2008) Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations. Transp Res B Methodol 42(5):455–481

    Article  Google Scholar 

  • Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv (CSUR) 41(3):15

    Article  Google Scholar 

  • Chen H, Yang C, Xu X (2017) Clustering vehicle temporal and spatial travel behavior using license plate recognition data. Journal of Advanced Transportation 2017:Article ID, 1738085

  • Du B, Liu C, Zhou W, Hou Z, Xiong H (2016) Catch me if you can: Detecting pickpocket suspects from large-scale transit records. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 87–96

  • Eagle N, Pentland AS (2009) Eigenbehaviors: Identifying structure in routine. Behav Ecol Sociobiol 63(7):1057–1066

    Article  Google Scholar 

  • Fan Z, Song X, Shibasaki R (2014) CitySpectrum: a non-negative tensor factorization approach. In: Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing, pp 213–223

  • Fan Z, Arai A, Song X, Witayangkurn A, Kanasugi H, Shibasaki R (2016) A collaborative filtering approach to citywide human mobility completion from sparse call records. In: Proceedings of the 25th international joint conference on artificial intelligence, pp 2500–2506

  • Farrahi K, Gatica-Perez D (2011) Discovering routines from large-scale human locations using probabilistic topic models. ACM Trans Intell Syst Technoly (TIST) 2(1):Article No.3

  • González MC, Hidalgo CA, Barabási AL (2008) Understanding individual human mobility patterns. Nature 453(7196):779–782

    Article  Google Scholar 

  • Goulet-Langlois G, Koutsopoulos HN, Zhao J (2016) Inferring patterns in the multi-week activity sequences of public transport users. Transp Res Part C Emerg Technol 64:1–16

    Article  Google Scholar 

  • Griffiths TL, Steyvers M (2004) Finding scientific topics. Proc Nat Acad Sci 101(suppl 1):5228–5235

    Article  Google Scholar 

  • Gupta M, Gao J, Aggarwal CC, Han J (2014) Outlier detection for temporal data: a survey. IEEE Trans Knowl Data Eng 26(9):2250–2267

    Article  Google Scholar 

  • Hanson S, Huff OJ (1988) Systematic variability in repetitious travel. Transportation 15(1):111–135

    Google Scholar 

  • Hasan S, Ukkusuri SV (2014) Urban activity pattern classification using topic models from online geo-location data. Transp Res Part C Emerg Technol 44:363–381

    Article  Google Scholar 

  • Hasan S, Schneider CM, Ukkusuri SV, González M C (2013) Spatiotemporal patterns of urban human mobility. J Stat Phys 151(1-2):304–318

    Article  Google Scholar 

  • Herrera JC, Work DB, Herring R, Ban XJ, Jacobson Q, Bayen AM (2010) Evaluation of traffic data obtained via gps-enabled mobile phones: The mobile century field experiment. Transp Res Part C Emerg Technol 18 (4):568–583

    Article  Google Scholar 

  • Huai B, Chen E, Zhu H, Xiong H, Bao T, Liu Q, Tian J (2014) Toward personalized context recognition for mobile users: a semisupervised bayesian hmm approach. ACM Trans Knowl Disc Data (TKDD) 9(2):10

    Google Scholar 

  • Jiang S, Ferreira J, González MC (2012) Clustering daily patterns of human activities in the city. Data Min Knowl Disc 25(3):478–510

    Article  Google Scholar 

  • Kazagli E, Koutsopoulos H (2013) Estimation of arterial travel time from automatic number plate recognition data. Transp Res Record J Transp Res Board (2391)22–31

  • Kitamura R, Yamamoto T, Susilo YO, Axhausen KW (2006) How routine is a routine? An analysis of the day-to-day variability in prism vertex location. Transp Res A Policy Pract 40(3):259–279

    Article  Google Scholar 

  • Matsubara Y, Sakurai Y, Faloutsos C, Iwata T, Yoshikawa M (2012) Fast mining and forecasting of complex time-stamped events. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 271–279

  • McInerney J, Zheng J, Rogers A, Jennings NR (2013) Modelling heterogeneous location habits in human populations for location prediction under data sparsity. In: Proceedings of the ACM international joint conference on pervasive and ubiquitous computing, pp 469–478

  • Mo B, Li R, Zhan X (2017) Speed profile estimation using license plate recognition data. Transp Res Part C Emerg Technol 82:358–378

    Article  Google Scholar 

  • Qin T, Shangguan W, Song G, Tang J (2018) Spatio-temporal routine mining on mobile phone data. ACM Trans Knowl Disc Data (TKDD) 12(5):56

    Google Scholar 

  • Schneider CM, Belik V, Couronné T, Smoreda Z, González MC (2013) Unravelling daily human mobility motifs. J Royal Soc Inter 10 (84):20130246

    Article  Google Scholar 

  • Schönfelder S, Axhausen KW (2016) Urban rhythms and travel behaviour: spatial and temporal phenomena of daily travel, Routledge

  • Shih DH, Shih MH, Yen DC, Hsu JH (2016) Personal mobility pattern mining and anomaly detection in the GPS era. Cartogr Geogr Inf Sci 43(1):55–67

    Article  Google Scholar 

  • Song C, Qu Z, Blumm N, Barabási AL (2010) Limits of predictability in human mobility. Science 327(5968):1018–1021

    Article  Google Scholar 

  • Sun L, Axhausen KW (2016) Understanding urban mobility patterns with a probabilistic tensor factorization framework. Transp Res B Methodol 91:511–524

    Article  Google Scholar 

  • Sun L, Axhausen KW, Lee DH, Huang X (2013) Understanding metropolitan patterns of daily encounters. Proc Nat Acad Sci 110(34):13774–13779

    Article  Google Scholar 

  • Widhalm P, Yang Y, Ulm M, Athavale S, González MC (2015) Discovering urban activity patterns in cell phone data. Transportation 42(4):597–623

    Article  Google Scholar 

  • Witayangkurn A, Horanont T, Sekimoto Y, Shibasaki R (2013) Anomalous event detection on large-scale gps data from mobile phones using hidden markov model and cloud platform. In: Proceedings of the 2013 ACM conference on pervasive and ubiquitous computing adjunct publication, pp 1219–1228

  • Xiong L, Póczos B, Schneider JG (2011) Group anomaly detection using flexible genre models. In: Advances in neural information processing systems, pp 1071–1079

  • Yin M, Sheehan M, Feygin S, Paiement JF, Pozdnoukhov A (2018) A generative model of urban activities from cellular data. IEEE Trans Intell Transp Syst 19(6):1682–1696

    Article  Google Scholar 

  • Yu R, He X, Liu Y (2014) GLAD: group anomaly detection in social media analysis. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 372–381

  • Zhan X, Li R, Ukkusuri SV (2015) Lane-based real-time queue length estimation using license plate recognition data. Transp Res Part C Emerg Technol 57:85–102

    Article  Google Scholar 

  • Zhang H, Zheng Y, Yu Y (2018) Detecting urban anomalies using multiple spatio-temporal data sources. Proc ACM Interact Mob Wearable Ubiquitous Technol 2(1):54

    Article  Google Scholar 

  • Zhang H, Chen P, Zheng J, Zhu J, Yu G, Wang Y, Liu HX (2019) Missing data detection and imputation for urban anpr system using an iterative tensor decomposition approach. Transp Res Part C Emerg Technol 107:337–355

    Article  Google Scholar 

  • Zhao J, Qu Q, Zhang F, Xu C, Liu S (2017) Spatio-temporal analysis of passenger travel patterns in massive smart card data. IEEE Trans Intell Transp Syst 18(11):3135–3146

    Article  Google Scholar 

  • Zhao Z, Koutsopoulos HN, Zhao J (2018) Detecting pattern changes in individual travel behavior: a bayesian approach. Transp Res B Methodol 112:73–88

    Article  Google Scholar 

  • Zhao Z, Koutsopoulos HN, Zhao J (2018) Individual mobility prediction using transit smart card data. Transp Res Part C Emerg Technol 89:19–34

    Article  Google Scholar 

  • Zheng J, Ni LM (2012) An unsupervised framework for sensing individual and cluster behavior patterns from human mobile data. In: Proceedings of the 2012 ACM conference on ubiquitous computing, pp 153–162

  • Zheng J, Liu S, Ni LM (2013) Effective routine behavior pattern discovery from sparse mobile phone data via collaborative filtering. In: Proceedings of the IEEE international conference on pervasive computing and communications (PerCom), pp 29–37

Download references

Acknowledgements

This research is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada, Mitacs Canada, Canada Foundation for Innovation, and Fundway Technology Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Sun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Chen, X., He, Z. et al. Routine Pattern Discovery and Anomaly Detection in Individual Travel Behavior. Netw Spat Econ 23, 407–428 (2023). https://doi.org/10.1007/s11067-021-09542-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-021-09542-9

Keywords

Navigation