Skip to main content

Advertisement

Log in

Modelling a storm surge under future climate scenarios: case study of extratropical cyclone Gudrun (2005)

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Weather Research and Forecasting atmosphere model and Finite Volume Community Ocean Model were for the first time used under the pseudo-climate simulation approach, to study the parameters of an extreme storm in the Baltic Sea area. We reconstructed the met-ocean conditions during the historical storm Gudrun (which caused a record-high +275 cm surge in Pärnu Bay on 9 January 2005) and simulated the future equivalent of Gudrun by modifying the background conditions using monthly mean value differences in sea surface temperature (SST), atmospheric air temperature and relative humidity from MIROC5 in accordance with the IPCC scenarios RCP4.5 and RCP8.5 for 2050 and 2100. The simulated storm route and storm surge parameters were in good accordance with the observed ones. Despite expecting the continuation of recently observed intensification of cyclonic activity in winter months, our numerical simulations showed that intensity of the strongest storms and storm surges in the Baltic Sea might not increase by the end of twenty-first century. Unlike tropical cyclones, which derive their energy from the increasing SST, the extratropical cyclones (ETCs) harvest their primary energy from the thermal differences on the sides of the polar front, which may decrease if the Arctic warms up. For climatological generalizations on future ETCs, however, it is necessary to re-calculate a larger number of storms, including those with different tracks and in different thermal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Cormier R et al (2013) Marine and coastal ecosystem-based risk management handbook. ICES Cooperative Research Report No. 317. p 60

  • Averkiev AS, Klevannyy KA (2010) A case study of the impact of cyclonic trajectories on sea-level extremes in the Gulf of Finland. Cont Shelf Res 30:707–714

    Article  Google Scholar 

  • BACC (2015) In: The BACC II Author Team (ed) Second assessment of climate change for the Baltic Sea Basin. Reg Clim St. Springer, p 501

  • Bader J, Mesquita MDS, Hodges KI, Keenlyside N, Østerhus S, Miles M (2011) A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: observations and projected changes. Atmos Res 101:809–834

    Article  Google Scholar 

  • Beljaars ACM (1994) The parameterization of surface fluxes in large-scale models under free 530 convection. Q J R Meteorol Soc 121:255–270

    Article  Google Scholar 

  • Bogdanov VI, Medvedev MY, Solodov VA, Trapeznikov YA, Troshkov GA, Trubitsina AA (2000) Mean monthly series of sea level observations (1777–1993) at the Kronstadt gauge. Reports of the Finnish Geodetic Institute 2000:1, Kirkkonummi, Finland

  • Booth JF, Wang S, Polvani L (2013) Midlatitude storms in a moister world: lessons from idealized baroclinic life cycle experiments. Clim Dyn 41:787–802

    Article  Google Scholar 

  • Carpenter G (2005) Windstorm Erwin/Gudrun—January 2005. Specialty Practice Briefing 2

  • Chen C, Liu H, Beardsley RC (2003) An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. J Atmos Oceanic Tech 20:159–186

    Article  Google Scholar 

  • Christensen OB, Kjellström E, Zorita E (2015) Projected change—atmosphere. In: The BACC II Author Team (ed) Second assessment of climate change for the Baltic Sea Basin. Springer, Cham, pp 217–233

  • Dyer AJ, Hicks BB (1970) Flux–gradient relationships in the constant flux layer. Q J R Meteorol Soc 96:715–721

    Article  Google Scholar 

  • Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688

    Article  Google Scholar 

  • Feser F, Barcikowska M, Krueger O, Schenk F, Weisse R, Xia L (2015) Storminess over the North Atlantic and northwestern Europe—a review. Q J R Meteorol Soc 141:350–382

    Article  Google Scholar 

  • Gregow H, Ruosteenoja K, Pimenoff N, Jylhä K (2012) Changes in the mean and extreme geostrophic wind speeds in Northern Europe until 2100 based on nine global climate models. Int J Climatol 32:1834–1846

    Article  Google Scholar 

  • Groenemeijer P, Vajda A, Lehtonen I, Kämäräinen M, Venäläinen A, Gregow H, Becker N, Nissen K, Ulbrich U, Paprotny D, Morales Nápoles O, Púčik T (2016) Present and future probability of meteorological and hydrological hazards in Europe. D2.5 report, RAIN project. http://rain-project.eu/wp-content/uploads/2016/09/D2.5_REPORT_final.pdf

  • Hansen J, Sato M, Hearty P, Ruedy R, Kelley M, Masson-Delmotte V, Russell G, Tselioudis G, Cao J, Rignot E, Velicogna I, Tormey B, Donovan B, Kandiano E, von Schuckmann K, Kharecha P, Legrande AN, Bauer M, Lo KW (2016) Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous. Atmos Chem Phys 16:3761–3812

    Article  Google Scholar 

  • Harvey BJ, Shaffrey LC, Woollings TJ (2014) Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Clim Dyn 43:1171–1182

    Article  Google Scholar 

  • Hill D (2012) The lessons of Katrina, learned and unlearned. J Coastal Res 29:324–331

    Article  Google Scholar 

  • Honda C, Mitsuyasu K (1980) Laboratory study on wind effect to ocean surface. J Coast Eng JSCE 27:90–93 (in Japanese)

    Google Scholar 

  • Hong SY, Lim JOJ (2006) The WRF single–moment 6–class microphysics scheme (WSM6). J Korean Meteorol Soc 42:129–151

    Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • Jaagus J, Suursaar Ü (2013) Long-term storminess and sea level variations on the Estonian coast of the Baltic Sea in relation to large-scale atmospheric circulation. Est J Earth Sci 62:73–92

    Article  Google Scholar 

  • Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, Rechid D, Remedio AR, Saeed F, Sieck K, Teichmann C, Wilhelm C (2012) Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmosphere 3:181–199

    Article  Google Scholar 

  • Johansson MM, Kahma KK (2016) On the statistical relationship between the geostrophic wind and sea level variations in the Baltic Sea. Boreal Environ Res 21:25–43

    Google Scholar 

  • Kall T, Liibusk A, Wan J, Raamat R (2016) Vertical crustal movements in Estonia determined from precise levellings and observations of the level of Lake Peipsi. Est J Earth Sci 65:27–47

    Article  Google Scholar 

  • Kawase H, Yoshikane T, Hara M, Kimura F, Yasunari T, Ailikun B, Ueda H, Inoue T (2009) Intermodel variability of future changes in the Baiu rainband estimated by the pseudo global warming downscaling method. J Geophys Res 114:D24110

    Article  Google Scholar 

  • Kimura F, Kitoh A (2007) Downscaling by pseudo global warming method. The Final Report of ICCAP, pp 43–46

  • Knutson TR, Tuleya RE (2004) Impact of CO2-induced warming on simulated hurricane intensity and precipitation: sensitivity to the choice of climate model and convective parameterization. J Clim 17:3477–3495

    Article  Google Scholar 

  • Kont A, Endjärv E, Jaagus J, Lode E, Orviku K, Ratas U, Rivis R, Suursaar Ü, Tõnisson H (2007) Impact of climate change on Estonian coastal and inland wetlands—a summary with new results. Boreal Environ Res 12:653–671

    Google Scholar 

  • Lambert SJ, Fyfe JC (2006) Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise. Clim Dyn 26:713–728

    Article  Google Scholar 

  • LeBlond PH, Mysak LA (1978) Waves in the ocean. Elsevier oceanographic series, vol 20. Elsevier, Amsterdam, p 602

    Google Scholar 

  • Magaard L, Krauss W (1966) Spektren der Wasserstandsschwankungen der Ostsee im Jahre 1958. Kieler Meeresforsch 22:155–162

    Google Scholar 

  • Matulla C, Schöner W, Alexandersson H, von Storch H, Wang XL (2008) European storminess: late nineteenth century to present. Clim Dyn 31:125–130

    Article  Google Scholar 

  • Mizuta R (2012) Intensification of extratropical cyclones associated with the polar jet change in the CMIP5 global warming projections. Geophys Res Lett 39:L19707

    Article  Google Scholar 

  • Mizuta R, Matsueda M, Endo H, Yukimoto S (2011) Future change in extratropical cyclones associated with change in the upper troposphere. J Clim 24:6456–6470

    Article  Google Scholar 

  • Nakamura R, Shibayama T, Esteban M, Iwamoto T (2016) Future typhoon and storm surges under different global warming scenarios: case study of typhoon Haiyan (2013). Nat Hazards 82:1645–1681

    Article  Google Scholar 

  • NCEP FNL (2000) National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Accessed 10 Jan 2015

  • Oh SM, Moon IJ (2013) Typhoon and storm surge intensity changes in a warming climate around the Korean Peninsula. Nat Hazards 66(3):1405–1429

    Article  Google Scholar 

  • Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9:857–861

    Article  Google Scholar 

  • Pinto JG, Ulbrich U, Leckebusch GC, Spangehl T, Reyers M, Zacharias S (2007) Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim Dyn 29:195–210

    Article  Google Scholar 

  • Post P, Kõuts T (2014) Characteristics of cyclones causing extreme sea levels in the northern Baltic Sea. Oceanologia 56(S):241–258

    Article  Google Scholar 

  • Quante M, Colijn F (2016) North Sea region climate change assessment. Reg Clim St. Springer, p 528

  • Roberts JF, Champion AJ, Dawkins LC, Hodges KI, Shaffrey LC, Stephenson DB, Stringer MA, Thornton HE, Youngman BD (2014) The XWS open access catalogue of extreme European windstorms from 1979 to 2012. Nat Hazard Earth Sys 14:2487–2501

    Article  Google Scholar 

  • Rutgersson A, Jaagus J, Schenk F, Stendel M, Bärring L, Briede A, Claremar B, Hanssen-Bauer I, Holopainen J, Moberg A, Nordli Ø, Rimkus E, Wibig J (2015) Recent change—atmosphere. In: The BACC II Author Team (ed) Second assessment of climate change for the Baltic Sea Basin, Springer, pp 69–97

  • Sato T, Kimura F, Kitoh A (2007) Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J Hydrol 333(1):144–154

    Article  Google Scholar 

  • Schernewski G, Hofstede J, Neumann T (eds) (2011) Global change and Baltic coastal zones. Springer, Berlin, p 298

    Google Scholar 

  • Sepp M, Post P, Jaagus J (2005) Long-term changes in the frequency of cyclones and their trajectories in Central and Northern Europe. Nord Hydrol 36:297–309

    Google Scholar 

  • Skamarock WC, Klemp JB, Duddhia J, Gill DO, Barker D.M, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Technical Note

  • Soomere T, Pindsoo K (2016) Spatial variability in the trends in extreme storm surges and weekly-scale high water levels in the eastern Baltic Sea. Cont Shelf Res 115:53–64

    Article  Google Scholar 

  • Soomere T, Behrens A, Tuomi L, Nielsen JW (2008) Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun. Nat Hazard Earth Syst 8:37–46

    Article  Google Scholar 

  • Stainforth DA, Alna T, Christensen C et al (2005) Uncertainty in the predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406

    Article  Google Scholar 

  • Suursaar Ü, Sooäär J (2007) Decadal variations in mean and extreme sea level values along the Estonian coast of the Baltic Sea. Tellus A 59(2):249–260

    Article  Google Scholar 

  • Suursaar Ü, Kullas T, Otsmann M (2002) A model study of sea level variations in the Gulf of Riga and the Väinameri Sea. Cont Shelf Res 22:2001–2019

    Article  Google Scholar 

  • Suursaar Ü, Kullas T, Otsmann M, Saaremäe I, Kuik J, Merilain M (2006) Hurricane Gudrun and modelling its hydrodynamic consequences in the Estonian coastal waters. Boreal Environ Res 11:143–159

    Google Scholar 

  • Suursaar Ü, Jaagus J, Tõnisson H (2015) How to quantify long-term changes in coastal sea storminess? Estuar Coast Shelf Sci 156:31–41

    Article  Google Scholar 

  • Tasnim KM, Shibayama T, Esteban M, Takagi H, Ohira K, Nakamura R (2015) Field observation and numerical simulation of past and future storm surges in the Bay of Bengal: case study of cyclone Nargis. Nat Hazards 75:1619–1647

    Article  Google Scholar 

  • Tewari M, Chen F, Wang W, Dudhia J, LeMone MA, Mitchell K, Ek M, Gayno G, Wegiel J, Cuenca RH (2004) Implementation and verification of the unified NOAH land surface 677 model in the WRF model. In: 678 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction (679), pp 11–15

  • Tõnisson H, Orviku K, Jaagus J, Suursaar Ü, Kont A, Rivis R (2008) Coastal damages on Saaremaa Island, Estonia, caused by the extreme storm and flooding on January 9, 2005. J Coast Res 24:602–614

    Article  Google Scholar 

  • Trenberth K (2005) Uncertainty in hurricanes and global warming. Science 308:1753–1754

    Article  Google Scholar 

  • Ulbrich U, Leckebusch GC, Pinto JG (2009) Extra-tropical cyclones in the present and future climate: a review. Theor Appl Climatol 96:117–131

    Article  Google Scholar 

  • Van Gelder PHAJM, Mai CV, Wang W, Shams G, Rajabalinejad M, Burgmeijer M (2008) Data management of extreme marine and coastal hydro-meteorological events. J Hydraul Res 46(Suppl. 2):191–210

    Article  Google Scholar 

  • van Vuuren DP, Edmonds JA, Kainuma M, Riahi K, Thomson AM, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose S (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. doi:10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Vecchi GA, Fueglistaler S, Held IM, Knutson TR, Zhao M (2013) Impacts of atmospheric temperature trends on tropical cyclone activity. J Clim 26:3877–3891

    Article  Google Scholar 

  • Vousdoukas MI, Voukouvalas E, Annunziato A, Giardino A, Feyen L (2016) Projections of extreme storm surge levels along Europe. Clim Dyn. doi:10.1007/s00382-016-3019-5

    Google Scholar 

  • Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335

    Article  Google Scholar 

  • Webb EK (1970) Profile relationships: the log-linear range, and extension to strong stability. Q J R Meteorol Soc 96:67–90

    Article  Google Scholar 

  • Webersik C, Esteban M, Shibayama T (2010) The economic impact of future increase in tropical cyclones in Japan. Nat Hazards 55:233–250

    Article  Google Scholar 

  • Wiśniewski B, Wolski T (2011) Physical aspects of extreme storm surges and falls on the Polish coast. Oceanologia 53(1-TI):373–390

    Article  Google Scholar 

  • IPCC AR5. IPCC Fifth Assessment Report (AR5). https://www.ipcc.ch/report/ar5/

  • Zappa G, Shaffrey LC, Hodges KI, Sansom PG, Stephenson DB (2013) A multi-model assessment of future projections of north atlantic and european extratropical cyclones in the CMIP5 climate models. J Clim 26:5846–5862

    Article  Google Scholar 

  • Zhang DL, Anthes RA (1982) A high-resolution model of the planetary boundary layer—sensitivity tests and comparisons with SESAME–79 data. J Appl Meteorol 21:1594–1609

    Article  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the Estonian Research Council Grant PUT1439 and by the Strategic Research Foundation Grant-aided Project for Private Universities (No: S1311028) from Japanese Ministry of Education, Culture, Sport, Science and Technology to Waseda University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Mäll.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mäll, M., Suursaar, Ü., Nakamura, R. et al. Modelling a storm surge under future climate scenarios: case study of extratropical cyclone Gudrun (2005). Nat Hazards 89, 1119–1144 (2017). https://doi.org/10.1007/s11069-017-3011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-017-3011-3

Keywords

Navigation