Skip to main content
Log in

Trajectory tracking of a class of under-actuated thrust-propelled vehicle with uncertainties and unknown disturbances

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with the problem of designing a controller for a thrust-propelled vehicle which steers the vehicle to track a 3D spatial path, while effective compensation for both time-varying disturbances and uncertainties is achieved as well. Taking advantage of extraction algorithm, we separate the design for the translational and rotational dynamics. A back-stepping-based controller and a sliding mode controller are, respectively, designed for the translational and rotational dynamics in succession. The stability of the control framework is established through Lyapunov analysis. A numerical simulation is also included in the paper to render the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdessameud, A., Tayebi, A.: Global trajectory tracking control of vtol-uavs without linear velocity measurements. Automatica 46(6), 1053–1059 (2010). doi:10.1016/j.automatica.2010.03.010

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdessameud, A., Tayebi, A.: Motion Coordination for VTOL Unmanned Aerial Vehicles. Advances in Industrial Control. Springer London, London (2013). doi:10.1007/978-1-4471-5094-7

    Book  MATH  Google Scholar 

  3. Aguiar, A.P., Hespanha, J.P.: Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Autom. Control 52(8), 1362–1379 (2007). doi:10.1109/TAC.2007.902731

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertrand, S., Guénard, N., Hamel, T., Piet-Lahanier, H., Eck, L.: A hierarchical controller for miniature VTOL UAVs: design and stability analysis using singular perturbation theory. Control Eng. Pract. 19(10), 1099–1108 (2011). doi:10.1016/j.conengprac.2011.05.008

    Article  Google Scholar 

  5. Børhaug, E., Pavlov, A., Panteley, E., Pettersen, K.Y.: Straight line path following for formations of underactuated marine surface vessels. IEEE Trans. Control Syst. Technol. 19(3), 493–506 (2011). doi:10.1109/TCST.2010.2050889

  6. Boskovic, J.D., Li, S.M., Mehra, R.K.: Robust tracking control design for spacecraft under control input saturation. J. Guid. Control Dyn. 27(4), 627–633 (2004). doi:10.2514/1.1059

    Article  Google Scholar 

  7. Cabecinhas, D., Cunha, R., Silvestre, C.: A nonlinear quadrotor trajectory tracking controller with disturbance rejection. In: 2014 American Control Conference, vol. 26, pp. 560–565. IEEE (2014). doi:10.1109/ACC.2014.6858615

  8. Cai, Z., de Queiroz, M.S., Dawson, D.M.: Robust adaptive asymptotic tracking of nonlinear systems with additive disturbance. IEEE Trans. Autom. Control 51(3), 524–529 (2006). doi:10.1109/TAC.2005.864204

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, Z., de Queiroz, M.S., Dawson, D.M.: A sufficiently smooth projection operator. IEEE Trans. Autom. Control 51(1), 135–139 (2006). doi:10.1109/TAC.2005.861704

    Article  MathSciNet  MATH  Google Scholar 

  10. Casau, P., Sanfelice, R.G., Cunha, R., Cabecinhas, D., Silvestre, C.: Robust global trajectory tracking for a class of underactuated vehicles. Automatica 58, 90–98 (2015). doi:10.1016/j.automatica.2015.05.011

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, M., Shi, P., Lim, C.C.: Robust constrained control for mimo nonlinear systems based on disturbance observer. IEEE Trans. Autom. Control 60(12), 3281–3286 (2015). doi:10.1109/TAC.2015.2450891

    Article  MathSciNet  MATH  Google Scholar 

  12. Diebel, J.: Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix 58, 1–35 (2006). doi:10.1093/jxb/erm298

    Google Scholar 

  13. Hua, M., Hamel, T., Morin, P.: A control approach for thrust-propelled underactuated vehicles and its application to vtol drones. IEEE Trans. (2009). doi:10.1109/TAC.2009.2024569

    MATH  Google Scholar 

  14. Hua, M.D., Morin, P., Samson, C.: Balanced-force-control of underactuated thrust-propelled vehicles. In: 2007 46th IEEE Conference Decision Control pp. 6435–6441 (2007). doi:10.1109/CDC.2007.4434268

  15. Kabiri, M., Atrianfar, H., Menhaj, M.B.: Formation control of vtol uav vehicles under switching-directed interaction topologies with disturbance rejection. Int. J. Control 1–12 (2016). doi:10.1080/00207179.2016.1266518.

  16. Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12), 3591–3599 (2013). doi:10.1016/j.automatica.2013.09.001

    Article  MathSciNet  MATH  Google Scholar 

  17. Madani, T., Benallegue, A.: Backstepping control with exact 2-sliding mode estimation for a quadrotor unmanned aerial vehicle. In: IEEE International Conference Intelligent Robots and Systems, pp. 141–146 (2007). doi:10.1109/IROS.2007.4399009

  18. Olfati-Saber, R.: Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles (2001)

  19. Panagou, D., Kyriakopoulos, K.J.: Viability control for a class of underactuated systems. Automatica 49(1), 17–29 (2013). doi:10.1016/j.automatica.2012.09.002

    Article  MathSciNet  MATH  Google Scholar 

  20. Pflimlin, J.M., Soueres, P., Hamel, T.: Position control of a ducted fan VTOL UAV in crosswind. Int. J. Control 80(5), 666–683 (2007). doi:10.1080/00207170601045034

    Article  MathSciNet  MATH  Google Scholar 

  21. Reyhanoglu, M., van der Schaft, A., Mcclamroch, N.H., Kolmanovsky, I.: Dynamics and control of a class of underactuated mechanical systems. IEEE Trans. Autom. Contr. 44(9), 1663–1671 (1999). doi:10.1109/9.788533

    Article  MathSciNet  MATH  Google Scholar 

  22. Roberts, A., Tayebi, A.: Adaptive position tracking of vtol uavs. IEEE Trans. Robot. 27(1), 129–142 (2011). doi:10.1109/TRO.2010.2092870

    Article  Google Scholar 

  23. Shuster, M.D.: A survey of attitude representations (1993). doi:10.2514/6.2012-4422

  24. Slotine, J.J.E., Li, W., et al.: Applied Nonlinear Control, vol. 199. prentice-Hall Englewood Cliffs, NJ (1991)

    MATH  Google Scholar 

  25. Song, Y., Cai, W.: Quaternion observer-based model-independent attitude tracking control of spacecraft. J. Guid. Control. Dyn. 32(5), 1476–1482 (2009). doi:10.2514/1.43029

    Article  Google Scholar 

  26. Wang, Z., Wu, Z.: Nonlinear attitude control scheme with disturbance observer for flexible spacecrafts. Nonlinear Dyn. 81(1–2), 257–264 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wen, C., Zhou, J., Liu, Z., Su, H.: Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans. Autom. Control 56(7), 1672–1678 (2011). doi:10.1109/TAC.2011.2122730

    Article  MathSciNet  MATH  Google Scholar 

  28. Xian, B., Dawson, D.M., DeQueiroz, M.S., Chen, J.: A continuous asymptotic tracking control strategy for uncertain nonlinear systems. IEEE Trans. Autom. Control 49(7), 1206 (2004). doi:10.1109/TAC.2004.831148

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, Z., Xia, Y., Fu, M.: Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans. Ind. Electron. 58(10), 4898–4907 (2011). doi:10.1109/TIE.2011.2107719

    Article  Google Scholar 

  30. Zou, A.M., Kumar, K.D., de Ruiter, A.H.J.: Robust attitude tracking control of spacecraft under control input magnitude and rate saturations. Int. J. Robust Nonlinear Control 26(4), 799–815 (2016). doi:10.1002/rnc.3338

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajar Atrianfar.

Appendices

Appendix

A Extraction algorithm

Here we introduce the extraction algorithm for obtaining \(Q_d\) and T form the intermediate control \(F=(F_1, F_2, F_3)^T\) given in (4).

$$\begin{aligned}&T=\frac{1}{\hat{\theta }} ||F-g\hat{z}||,\end{aligned}$$
(63)
$$\begin{aligned}&\eta _{d}=\sqrt{\frac{1}{2}+\frac{g-F_{3}}{2||F-g\hat{z}||}},\,\, q_{d}=\frac{1}{2 ||F-g\hat{z}|| \eta _{d}}\begin{pmatrix} F_{2} \\ -F_{1} \\ 0 \end{pmatrix}.\nonumber \\ \end{aligned}$$
(64)

As it is clear from (64), this extraction is well defined if

$$\begin{aligned} F\ne g\hat{z}. \end{aligned}$$
(65)

The desired angular velocity \(\omega _{d}\) and its derivative \(\dot{\omega }_{d}\) can also be obtained by the following expressions

$$\begin{aligned} \omega _d= & {} \varXi (F)\dot{F}, \end{aligned}$$
(66)
$$\begin{aligned} \dot{\omega }_d= & {} \dot{\varXi }(F, \dot{F})\dot{F}+\varXi (F)\ddot{F}, \end{aligned}$$
(67)

with

$$\begin{aligned} \varXi (F)=\frac{1}{\ell _1^2 \ell _2}\begin{pmatrix} -F_{1}F_{2} &{} -F^{2^2}+\ell _1\ell _2 &{} -F_{2}\ell _2 \\ F^{1^2}-\ell _1\ell _2 &{} F_{1}F_{2} &{} -F_{1}\ell _2\\ F_{2}\ell _1 &{} -F_{1}\ell _1 &{} 0 \end{pmatrix}, \end{aligned}$$
(68)

where \(\ell _1=||F-g\hat{z}||,\quad \ell _2=\ell _1+(g-\mu _{3})\) and \(\dot{\varXi }(F, \dot{F})\) is the time derivative of \(\varXi (F)\) and the subscript i is omitted for notational simplicity. The proof can be found in [2].

B Analysis of boundedness of \(\omega _d\) and \(\dot{\omega }_d\)

From (66) to (67), boundedness of \(\omega _d\) and \(\dot{\omega }_d\) can be guaranteed if F, \(\dot{F}\), \(\ddot{F}\) are bounded. Regarding the structure of F defined in (9)–(10), it is obvious that F is bounded and \(\dot{F}\) and \(\ddot{F}\) are bounded if, respectively, w and its derivative are bounded. From (29), we have

$$\begin{aligned} w=-k_3s_2-\varPhi _2+\ddot{v}_d+k_1^2\tilde{v}, \end{aligned}$$

and boundedness of w can be easily concluded by Assumption 2 and boundedness of \(s_2\) and \(\tilde{v}\) which are provided by the discussion in Sect. 4. The derivative of w is obtained by

$$\begin{aligned} \dot{w}=-k_3\dot{s}_2-\dot{\varPhi }_2+v^{(3)}_d+k_1^2\dot{\tilde{v}}. \end{aligned}$$

Viewing (3) and Assumption 2, the last two terms in the above equation are bounded based on boundedness of \(s_1\), F, \(\tilde{F}\), \(\tilde{{\bar{\theta }}}\) which is concluded from the discussion in Sect. 4. Based on (9)–(10) and (15), we have

$$\begin{aligned} \dot{s}_2=\dot{f}(u)-\dot{f_d}=w+k_2 \tanh (s_1)+\varPhi _1-\dot{v}_d+k_1\tilde{v}, \end{aligned}$$

which is also bounded. It now just remains to prove that \(\dot{\varPhi }_2\) is bounded. From (30), we can obtain

$$\begin{aligned} \dot{\varPhi }_2= & {} u_{m2}\frac{\dot{s}_2^T\left( ||s_2||^2+(\kappa _2\sigma _2)^2\right) -s_2^T\left( s_2^T \dot{s}_2+\kappa _2\dot{\kappa }_2\sigma _2 \right) }{\left( ||s_2||^2+(\kappa _2\sigma _2)^2\right) ^{3/2}},\nonumber \\ \end{aligned}$$
(69)

which is also bounded since \(\dot{s}_2\), \(s_2\), \(\kappa _2\) are bounded, \(\dot{\kappa }_2\) is bounded from (31), and the fact that \(\kappa _2\) is kept away from zero by suitable selection of the gain \(\lambda _2\) and the initial value \(\kappa _2(0)\) as explained in Sect. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabiri, M., Atrianfar, H. & Menhaj, M.B. Trajectory tracking of a class of under-actuated thrust-propelled vehicle with uncertainties and unknown disturbances. Nonlinear Dyn 90, 1695–1706 (2017). https://doi.org/10.1007/s11071-017-3759-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3759-8

Keywords

Navigation