Skip to main content

Advertisement

Log in

Nonlinear vibration analysis of vortex-induced vibrations in overhead power lines with nonlinear vibration absorbers

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Vortex-induced vibrations are one of the major factors in fatigue failure of power transmission lines and can be mitigated using vibration absorbers in the form of Stockbridge dampers. Since power transmission lines play an important role in modern infrastructure, a thorough understanding of the nonlinear dynamical interactions between conductors, dampers, and wind forces is crucial. Although different nonlinear models exist for conductor vibration with attached dampers or under wind force, no work combines all these nonlinearities in a single model and examines the dynamics of the conductor along with dampers. In an attempt to fill this gap, this work combines the nonlinearities from the mid-plane stretching of the conductor, equivalent cubic stiffness of the Stockbridge damper, and fluctuating lift force modeled as a Van der Pol oscillator in a single model to investigate the nonlinear vortex-induced vibrations. In this work, the conductor is modeled as a simply supported beam and the Stockbridge damper as a mass–spring–damper–mass system with a combination of cubic and linear stiffness. The governing equations of motion are solved analytically using the method of multiple scales for the case of primary resonance between the fluctuating lift-force and conductor. Analytical findings are further validated by comparing against the numerical integration of a reduced-order system, and the results show an excellent match. The analysis is extended by conducting a parametric study to investigate the effect of different system parameters on the frequency response curves. These findings are promising and further provide a direction to design an optimal vibration absorber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Skop, R.A., Balasubramanian, S.: A new twist on an old model for vortex-excited vibrations. J. Fluids Struct. 11(4), 395–412 (1997)

    Article  Google Scholar 

  2. Benedettini, F., Rega, G.: Non-linear dynamics of an elastic cable under planar excitation. Int. J. Non-Linear Mech. 22(6), 497–509 (1987)

    Article  MATH  Google Scholar 

  3. Chan, J., et al.: EPRI Transmission Line Reference Book: Wind-Induced Conductor Motion. Electric Power Research Institute, Palo Alto, CA (2009)

    Google Scholar 

  4. Barry, O., Zu, J.W., Oguamanam, D.C.D.: Analytical and experimental investigation of overhead transmission line vibration. J. Vib. Control 21(14), 2825–2837 (2015)

    Article  MathSciNet  Google Scholar 

  5. Barry, O., Oguamanam, D.C., Lin, D.C.: Aeolian vibration of a single conductor with a stockbridge damper. In Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, pp. 935–945. Institution of Mechanical Engineers (2013)

  6. Barry, O., Long, R., Oguamanam, D.C.: Simplified vibration model and analysis of a single-conductor transmission line with dampers. In: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 231, pp. 4150–4162. Institution of Mechanical Engineers, New York (2016)

  7. Barry, O., Zu, J.W., Oguamanam, D.C.D.: Forced vibration of overhead transmission line: analytical and experimental investigation. J. Vib. Acoust. 136, 4 (2014)

    Article  Google Scholar 

  8. Oliveira, A.R.E., Freire, D.G.: Dynamical modelling and analysis of aeolian vibrations of single conductors. IEEE Trans. Power Deliv. 9(3), 1685–1693 (1994)

    Article  Google Scholar 

  9. Verma, H., Hagedorn, P.: Wind induced vibrations of long electrical overhead transmission line spans: a modified approach. Wind Struct. 8(2), 89–106 (2005)

    Article  Google Scholar 

  10. Schäfer, B.: Dynamical modelling of wind-induced vibrations of overhead lines. Int. J. Non-Linear Mech. 19(5), 455–467 (1984)

    Article  MATH  Google Scholar 

  11. Kraus, M., Hagedorn, P.: Aeolian vibrations: wind energy input evaluated from measurements on an energized transmission line. IEEE Trans. Power Deliv. 6(3), 1264–1270 (1991)

    Article  Google Scholar 

  12. Nigol, O., Houston, H.J.: Aeolian vibration of single conductor and its control. IEEE Trans. Power Deliv. 104(11), 3245–3254 (1985)

    Article  Google Scholar 

  13. Tompkins, J.S., Merill, L.L., Jones, B.L.: Quantitative relationships in conductor vibration using rigid models. IEEE Trans. Power Apparat. Syst. 75(11), 879–894 (1956)

    Google Scholar 

  14. Rawlins, C.B.: Recent developments in conductor vibration. Alcoa Technical Paper No. 13 (1958)

  15. Hardy, C., Noiseux, D.U.: Modeling of a Single Conductor-Damper System Response, vol 1. Theoretical and Validation Manual. CEA, Hydro (1996)

  16. Noiseux, D.U., Hardy, C., Houle, S.: Statistical methods applied to aeolian vibration of overhead conductors. J. Sound Vib. 113(2), 245–255 (1987)

    Article  Google Scholar 

  17. Tsui, Y.T.: Recent advances in engineering science as applied to aeolian vibrations an alternative approach. Electr. Power Syst. Res. 5, 73–85 (1982)

    Article  Google Scholar 

  18. Dowell, E.H.: Component mode analysis of nonlinear and nonconservative systems. J. Appl. Mech. 47(1), 172–176 (1980)

    Article  MATH  Google Scholar 

  19. Pakdemirli, M., Nayfeh, A.H.: Nonlinear vibrations of a beam-spring-mass system. J. Vib. Acoust. 116(4), 433–439 (1994)

    Article  Google Scholar 

  20. Barry, O., Oguamanam, D.C.D., Zu, J.W.: Nonlinear vibration of an axially loaded beam carrying multiple mass-spring-damper systems. Nonlinear Dyn. 77, 1597–1608 (2014)

    Article  MathSciNet  Google Scholar 

  21. Bukhari, M., Barry, O.: Nonlinear vibrations analysis of overhead power lines: a beam with mass-spring-damper-mass systems. J. Vib. Acoust. 140(3) (2017)

  22. Khan, N.S., Islam, S., Gul, T., Khan, W., Khan, I., Ali, L., Khan, N., Waris, K., Als, L.: Thin film flow of a second grade fluid in a porous medium past a stretching sheet with heat transfer. Alexandria Eng. J. 57, 1019–1031 (2017)

    Article  Google Scholar 

  23. Khan, N.S., Gul, T., Islam, S., Khan, I., Alqahtani, A.M., Alshomrani, A.S.: Magnetohydrodynamic nanoliquid thin film sprayed on a stretching cylinder with heat transfer. Appl. Sci. 7, 271 (2017)

    Article  Google Scholar 

  24. Khan, I., Shafie, S.: Rotating mhd flow of a generalized burgers’ fluid over an oscillating plate embedded in a porous medium. Thermal Sci. 19, 183–190 (2015)

    Article  Google Scholar 

  25. Zuhra, S., Khan, N.S., Khan, M., Islam, S., Khan, W., Bonyah, E.: Flow and heat transfer in water based liquid film fluids dispensed with graphene nanoparticles. Results Phys. 8, 1143–1157 (2018)

    Article  Google Scholar 

  26. Khan, N.S., Gul, T., Khan, M.A., Bonyah, E., Islam, S.: Mixed convection in gravity-driven thin film non-newtonian nanofluids flow with gyrotactic microorganisms. Results Phys. 7, 4033–4049 (2017)

    Article  Google Scholar 

  27. Morkovin, M.V.: Flow around circular cylinders. a caleidoscope of challenging fluid phenomena. In: ASME Symposium on Fully Separated Flows, Philadelphia, PA, pp. 102–118 (1964)

  28. Marris, A.W.: A review on vortex streets, periodic wakes, and induced vibration phenomena. ASME J. Basic Eng. 86, 185–196 (1964)

    Article  Google Scholar 

  29. Mair, W.A., Maull, D.J.: Bluff bodies and vortex shedding–a report on euromech 17. J. Fluid Mech. 45, 209–224 (1971)

    Article  MATH  Google Scholar 

  30. Hartlen, R.T., Currie, I.G.: Lift-oscillator model of vortex-induced vibration. J. Eng. Mech. Div. 96(5), 577–591 (1970)

    Article  Google Scholar 

  31. Skop, R.A., Griffin, O.M.: A model for the vortex-excited resonant response of bluff cylinders. J. Sound Vib. 27(2), 225–233 (1973)

    Article  Google Scholar 

  32. Iwan, W.D., Blevins, R.D.: A model for vortex induced oscillation of structures. J. Appl. Mech. 41(3), 581–586 (1974)

    Article  Google Scholar 

  33. Skop, R.A., Griffin, O.M.: On a theory for the vortex-excited oscillations of flexible cylindrical structures. J. Sound Vib. 41, 263–274 (1974)

    Article  MATH  Google Scholar 

  34. Iwan, W.D.: The vortex induced oscillation of elastic structural elements. ASME J. Eng. Ind. 97, 1378–1382 (1975)

    Article  Google Scholar 

  35. Williamson, C.H.K., Govardhan, R.: Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413–455 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kim, W.-J., Perkins, N.C.: Two-dimensional vortex-induced vibration of cable suspensions. J. Fluids Struct. 16(2), 229–245 (2002)

    Article  Google Scholar 

  37. Facchinetti, M.L., de Langre, E., Biolley, F.: Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 19(3), 123–140 (2004)

    Article  Google Scholar 

  38. Govardhan, R., Williamson, C.H.K.: Modes of vortex formation and frequency response of a freely vibrating cylinder. J. Fluid Mech. 420, 85130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Norberg, C.: Fluctuating lift on a circular cylinder: review and new measurements. J. Fluids Struct. 17(1), 57–96 (2003)

    Article  Google Scholar 

  40. Sarpakaya, T.: Vortex-induced oscillations: a selective review. J. Appl. Mech. 46, 241–258 (1979)

    Article  Google Scholar 

  41. Griffin, O.M., Ramberg, S.E.: Some recent studies of vortex shedding with application to marine tubulars and risers. ASME J. Energy Resour. Technol. 104, 2–13 (1982)

    Article  Google Scholar 

  42. Parkinson, G.: Phenomena and modeling of flow-induced vibrations of bluff bodies. Prog. Aerosp. Sci. 26, 169–224 (1989)

    Article  Google Scholar 

  43. Pantazopoulos, M.S.: Vortex-induced vibration parameters: critical review. Proc. Int. Conf. Offshore Mech. Arct. Eng. 1, 199–255 (1994)

    Google Scholar 

  44. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)

    MATH  Google Scholar 

  45. Wu, J.-S., Chou, H.-M.: Free vibration analysis of a cantilever beam carrying any number of elastically mounted point masses with the analytical-and-numerical-combined method. J. Sound Vib. 213(2), 317–332 (1998)

    Article  Google Scholar 

  46. Ramberg, S.E., Griffin, O.M.: Vortex formation in the wake of a vibrating, flexible cable. ASME J. Fluids Eng 96, 317–322 (1974)

    Article  Google Scholar 

  47. Ramberg, S.E., Griffin, O.M.: Velocity correlation and vortex spacing in the wake of a vibrating cable. ASME J. Fluids Eng. 99, 10–18 (1976)

    Article  Google Scholar 

  48. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was funded by National Science Foundation CAREER Award ECCS #1944032. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oumar R. Barry.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Expressions used in Eq. (34)

Appendix A: Expressions used in Eq. (34)

For the sake of simplicity, slow flow equations (Eq (33)), governing the amplitude and phase, can be written in a more compact form as

$$\begin{aligned}&D_2 a_y=A_{11}+B_{11}\sin (\Gamma )\,, \end{aligned}$$
(39a)
$$\begin{aligned}&D_2 q_y=A_{12}+B_{12}\cos (\Gamma )\,, \end{aligned}$$
(39b)
$$\begin{aligned}&D_2 \Gamma =\sigma +B_{14}\sin (\Gamma )-A_{13}-B_{13}\cos (\Gamma )\,, \end{aligned}$$
(39c)

where \(A_{ij}\) (for \(i=1,\,2,\,3\) and \(j=1,\,2,\,3\)) and \(B_{ij}\) (for \(i=1,\,2,\,3\) and \(j=1,\,2,\,3,\,4\)) are the function of system parameters, excitation frequency, and amplitudes \(a_y\) and \(q_y\). These are given by

$$\begin{aligned}&A_{11} =\frac{\sum _{p=1}^{n}\Big [{a_y} {c_{dp}}({\Psi _p}-1){Y_p}( {\xi _p}) ^{2}+{a_y} {k_p}{\Psi _{4,p}}(1-\Psi _p) {Y_p}( {\xi _p})\Big ]}{\sum _{p=1}^{n}\Big [{k_p}{Y_p}( {\xi _p}) {\Psi _{3,p}}+2{Y_p}( {\xi _p})^{2}{\alpha _{1p}}\Big ]+2b_1}\nonumber \\&\qquad -\,\frac{2{\omega _y}{a_y} {f^*_L}{\bar{\alpha }}{b_1} +2{\omega _y}{a_y} {\bar{\mu }}{ b_1}{\omega _s}}{\sum _{p=1}^{n}\Big [{\omega _s}{\omega _y}{k_p}{Y_p}( {\xi _p}) {\Psi _{3,p}}+2{\omega _s}{ \omega _y}{Y_p}( {\xi _p})^{2}{\alpha _{1p}}\Big ]+2\omega _y\omega _s b_1} \nonumber \\\end{aligned}$$
(40a)
$$\begin{aligned}&B_{11} =\frac{{f^*_L}{q_y} { b_1}{\omega _s}}{\sum _{p=1}^{n}\Big [{\omega _s}{\omega _y}{k_p}{Y_p}( {\xi _p}) {\Psi _{3,p}}+2{\omega _s}{ \omega _y}{Y_p}( {\xi _p})^{2}{\alpha _{1p}}\Big ]+2\omega _y\omega _s b_1} \nonumber \\\end{aligned}$$
(40b)
$$\begin{aligned}&A_{12}\nonumber \\&\quad ={ \omega _s}G{{C_{L0}^*}}^{2}{q_y} {b_1}- {q_y}^{3}G{\omega _s} {b_{12}},\quad \,B_{12}=\frac{1}{2b_1}{a_y}{F^*}{\omega _y} {b_1}\,, \end{aligned}$$
(40c)
$$\begin{aligned}&A_{13}={\frac{\sum _{p=1}^{n} \left( 6{a_y}^{3}{ k_p}{Y_p}( {\xi _p}) {\Psi _{2,p}}-6{a_y}^{3}{\gamma _p}{Y_p}( {\xi _p})^{4}{ \Psi _{1,p}}\right) }{\sum _{p=1}^{n} {a_y}{\omega _y} \Big [16{b_1}+8{k_p}{Y_p}( {\xi _p}) { \Psi _{3,p}}+16{Y_p}( {\xi _p})^{2}{\alpha _{1p}}\Big ]}}\nonumber \\&\qquad -\,{\frac{3{a_y} ^{3}\lambda {b_{2}}{b_{3}}}{\sum _{p=1}^{n} {a_y}{\omega _y} \Big [16{b_1}+8{k_p}{Y_p}( {\xi _p}) { \Psi _{3,p}}+16{Y_p}( {\xi _p})^{2}{\alpha _{1p}}\Big ]}} \end{aligned}$$
(40d)
$$\begin{aligned}&B_{13}={\frac{-8{f^*_L}{q_y} {b_1}}{\sum _{p=1}^{n} {a_y}{\omega _y} \Big [16{b_1}+8{k_p}{Y_p}( {\xi _p}) { \Psi _{3,p}}+16{Y_p}( {\xi _p})^{2}{\alpha _{1p}}\Big ]}},\nonumber \\&B_{14}=-\frac{1}{2q_y}{a_y} {F^*}{\omega _y }\,. \end{aligned}$$
(40e)

As mentioned in the main text, the steady state amplitudes and phase can be obtained by setting \(D_2 a_y=D_2 q_y=D_2\Gamma =0\), which further leads to

$$\begin{aligned}&A^{*}_{11}+B^{*}_{11}\sin (\Gamma ^{*})=0\,, \end{aligned}$$
(41a)
$$\begin{aligned}&A^{*}_{12}+B^{*}_{12}\cos (\Gamma ^{*})=0\,, \end{aligned}$$
(41b)
$$\begin{aligned}&\sigma +B^{*}_{14}\sin (\Gamma ^{*})-A^{*}_{13}-B^{*}_{13}\cos (\Gamma ^{*})=0\,. \end{aligned}$$
(41c)

In the above equation, superscript \(^{*}\) refers to steady state quantities. Equations (41a) and (41b) can be solved for \(\sin (\Gamma ^{*})\) and \(\cos (\Gamma ^{*})\) to get

$$\begin{aligned} \sin (\Gamma ^{*})=-\frac{A^{*}_{11}}{B^{*}_{11]}},\quad \cos (\Gamma ^{*})=-\frac{A^{*}_{12}}{B^{*}_{12}}\,. \end{aligned}$$
(42)

In the next step, by using trigonometric identity, and substituting Eq. (42) in Eq. (41c), we get two algebraic equations in the form of

$$\begin{aligned}&\left( \frac{A^{*}_{11}}{B^{*}_{11]}}\right) ^2+\left( \frac{A^{*}_{12}}{B^{*}_{12}}\right) ^2-1=0\,, \end{aligned}$$
(43a)
$$\begin{aligned}&\sigma -B^{*}_{14}\frac{A^{*}_{11}}{B^{*}_{11]}}-A^{*}_{13}+B^{*}_{13}\frac{A^{*}_{12}}{B^{*}_{12}}=0\,, \end{aligned}$$
(43b)

Note that in the above equations except \(a^{*}_y\) and \(q^{*}_y\) all the system and excitation parameters are known, hence, these simultaneous algebraic equations can be used to govern the steady state amplitudes \(a^{*}_y\) and \(q^{*}_y\) and can be written in a compact form as

$$\begin{aligned} \begin{aligned} G_1(a^{*}_y,\,q^{*}_y)&=\left( \frac{A^{*}_{11}}{B^{*}_{11]}}\right) ^2+\left( \frac{A^{*}_{12}}{B^{*}_{12}}\right) ^2-1=0\\ G_2(a^{*}_y,\,q^{*}_y)&=\sigma -B^{*}_{14}\frac{A^{*}_{11}}{B^{*}_{11]}}-A^{*}_{13}+B^{*}_{13}\frac{A^{*}_{12}}{B^{*}_{12}}=0. \end{aligned} \end{aligned}$$
(44)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Malla, A.L. & Barry, O.R. Nonlinear vibration analysis of vortex-induced vibrations in overhead power lines with nonlinear vibration absorbers. Nonlinear Dyn 103, 27–47 (2021). https://doi.org/10.1007/s11071-020-06100-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06100-9

Keywords

Navigation