Skip to main content
Log in

Complexity analysis of the time series using inverse dispersion entropy

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The primary object of this study is to measure the complexity of different types of signals. We undertake the experiment to support the hypothesis of inverse dispersion entropy (IDE). Multiscale inverse dispersion entropy (MIDE) is also proposed to measure the intrinsic properties of the dynamic system. In addition, this work forms fractional inverse dispersion entropy (FIDE) and \(s^\alpha \) fractional inverse dispersion entropy (SFIDE) inspired in the properties of fractional calculus. Numerical simulations from different categories are applied to test the effectiveness of the proposed methods. Then, we apply the means to heart rate fluctuation data derived from healthy subjects and unhealthy subjects. Experimental results show that dispersion entropy and IDE can make us have a more complete understanding concerning signal complexity. Besides, MIDE method can distinguish the healthy state, pathological state and aging pattern. SFIDE is more sensitive to the change of the fractional order than FIDE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Macek, W.M.: Nonlinear dynamics and complexity in the generalized Lorenz system. Nonlinear Dyn. 94, 2957–2968 (2018)

    Article  Google Scholar 

  2. Ramdani, S., Seigle, B., Lagarde, J., Bouchara, F., Bernard, P.L.: On the use of sample entropy to analyze human postural sway data. Med. Eng. Phys. 31(8), 1023–1031 (2009)

    Article  Google Scholar 

  3. Mao, X., Shang, P., Li, Q.: Multivariate multiscale complexity-entropy causality plane analysis for complex time series. Nonlinear Dyn. 96, 2449–2462 (2019)

    Article  Google Scholar 

  4. Shyu, K.K., Wu, Y.T., Chen, T.R., Chen, H.Y., Hu, H.H., Guo, W.Y.: Analysis of fetal cortical complexity from \(mr\) images using 3d entropy based information fractal dimension. Nonlinear Dyn. 61(3), 363–372 (2010)

    Article  MATH  Google Scholar 

  5. Nihat, A., Jessica, F., Krakauer, D.C.: Robustness and complexity co-constructed in multimodal signalling networks. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 362(1479), 441–447 (2019)

  6. Eyebe, F.J.S.A., Koepf, W.: Detecting regular dynamics from time series using permutations slopes. Commun. Nonlinear Sci. Numer. Simul. 27(1–3), 216–227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lopes, A.M., Machado, J.A.T.: Analysis of temperature time-series: embedding dynamics into the mds method. Commun. Nonlinear Sci. Numer. Simul. 19(4), 851–871 (2014)

    Article  MATH  Google Scholar 

  8. Xu, M., Shang, P.: Multiscale time irreversibility analysis of financial time series based on segmentation. Nonlinear Dyn. 1–16, (2018)

  9. Ortín, S., Gutiérrez, J., Pesquera, L., Vasquez, H.: Nonlinear dynamics extraction for time-delay systems using modular neural networks synchronization and prediction. Phys. A Stat. Mech. Appl. 351(1), 133–141 (2005)

    Article  Google Scholar 

  10. Porta, A., Guzzetti, S., Furlan, R., Gnecchi-Ruscone, T., Malliani, A.: Complexity and nonlinearity in short-term heart period variability: comparison of methods based on local nonlinear prediction. IEEE Trans. Biomed. Eng. 54(1), 94–106 (2006)

    Article  Google Scholar 

  11. Aboy, M., Hornero, R., Absolo, D., Alvarez, D.: Interpretation of the Lempel–Ziv complexity measure in the context of biomedical signal analysis. IEEE Trans. Biomed. Eng. 53(11), 2282–2288 (2006)

    Article  Google Scholar 

  12. Machado, J., Rocha-Neves, J.M., Andrade, J.P.: Computational analysis of the sars-cov-2 and other viruses based on the Kolmogorov’s complexity and Shannon’s information theories. Nonlinear Dyn. 101, 8 (2020)

    Article  Google Scholar 

  13. Young, L.S.: Mathematical theory of Lyapunov exponents. J. Phys. A Math. Theor. 46(25), 254001 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, W.S., Yuan, S.Y., Hsiao, H., Hsieh, C.M.: Algorithms to estimating fractal dimension of textured images. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (2001)

  15. Sinai, Y.: Kolmogorov–Sinai entropy. Scholarpedia 4(3)

  16. Richman, J.S., Randall, M.J.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), H2039–H2049 (2000)

    Article  Google Scholar 

  17. Hilborn, C.: Robert, Chaos and nonlinear dynamics: an introduction for scientists and engineers. Am. J. Phys. 62(9), 861 (1994)

    Article  MATH  Google Scholar 

  18. Abe, S., Okamoto, Y.: Nonextensive statistical mechanics and its application. Lecture Notes Phys. 560(2), 89–92 (2001)

    MathSciNet  Google Scholar 

  19. Yin, Y., Wang, X., Li, Q., Shang, P., Ma, Y.: Multiscale permutation mutual information quantify the information interaction for traffic time series. Nonlinear Dyn. 102(3), 1–15 (2020)

    Article  Google Scholar 

  20. Mathai, A.M., Haubold, H.J.: Pathway model, superstatistics, tsallis statistics, and a generalized measure of entropy. Phys. A Stat. Mech. Appl. 375(1), 110–122 (2006)

    Article  MathSciNet  Google Scholar 

  21. Li, M., Lu, D., Xiang, Y., Zhang, Y., Ren, H.: Cryptanalysis and improvement in a chaotic image cipher using two-round permutation and diffusion. Nonlinear Dyn. 96, 31–47 (2019)

    Article  MATH  Google Scholar 

  22. Udhayakumar, R.K., Karmakar, C., Palaniswami, M.: Understanding irregularity characteristics of short-term hrv signals using sample entropy profile. IEEE Trans. Biomed. Eng. 65(11), 2569–2579 (2018)

    Article  Google Scholar 

  23. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89(6), 705–708 (2007)

    Google Scholar 

  24. Zheng, J., Pan, H., Yang, S., Cheng, J.: Generalized composite multiscale permutation entropy and Laplacian score based rolling bearing fault diagnosis. Mech. Syst. Signal Process. 99, 229–243 (2017)

    Article  Google Scholar 

  25. Abdullah, S., Amin, N.U.: Analysis of s-box image encryption based on generalized fuzzy soft expert set. Nonlinear Dyn. 79(3), 1679–1692 (2015)

    Article  Google Scholar 

  26. Li, C., Zheng, J., Pan, H., Tong, J., Zhang, Y.: Refined composite multivariate multiscale dispersion entropy and its application to fault diagnosis of rolling bearing. IEEE Access 7, 47663–47673 (2019)

    Article  Google Scholar 

  27. Zhao, X., Shang, P., Huang, J.: Permutation complexity and dependence measures of time series. Epl 102(4), 40005 (2013)

    Article  Google Scholar 

  28. Azami, H., Escudero, J.: Amplitude-aware permutation entropy: illustration in spike detection and signal segmentation. Comput. Methods Programs Biomed. 128, 40–51 (2016)

    Article  Google Scholar 

  29. Fadlallah, B., Chen, B., Keil, A., Prncipe, J.: Weighted-permutation entropy: a complexity measure for time series incorporating amplitude information. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 87(2–1), 022911 (2013)

    Article  Google Scholar 

  30. Rostaghi, M., Azami, H.: Dispersion entropy: a measure for time-series analysis. IEEE Signal Process. Lett. 23(5), 610–614 (2016)

    Article  Google Scholar 

  31. Azami, H., Fernández, A., Escudero, J.: Multivariate multiscale dispersion entropy of biomedical times series. Entropy 21(9), 913 (2019)

    Article  MathSciNet  Google Scholar 

  32. Machado, J.T.: Fractional order generalized information. Entropy 16(4), 2350–2361 (2014)

    Article  Google Scholar 

  33. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153

  34. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional calculus models and numerical methods. World Sci. 25(2), 305–307 (2012)

    MATH  Google Scholar 

  35. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  36. Lopes, A.M., Machado, J.T.: Fractional order models of leaves. J. Vib. Control 20(7), 998–1008 (2013)

    Article  MathSciNet  Google Scholar 

  37. Silva, M.F., Machado, J.A.T., Lopes, A.M.: Fractional order control of a hexapod robot. Nonlinear Dyn. 38(1), 417–433 (2004)

    Article  MATH  Google Scholar 

  38. Karci, A.: A new approach for fractional order derivative and its applications. J. Endod. 40(4), 566–570 (2013)

    Google Scholar 

  39. Karci, A.: Generalized fractional order derivatives for products and quotients. Sci. Innov. 3(5), 58 (2015)

    Article  Google Scholar 

  40. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 5(3), 3–55 (2001)

    Google Scholar 

  41. Lavagno, A., Scarfone, A.M., Swamy, P.N.: Basic-deformed thermostatistics. J. Phys. A Math. Theor. 40(30), 8635–8654 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Curado, E.M.F., Tsallis, C.: Generalized statistical mechanics: connection with thermodynamics. J. Phys. A Gen. Phys. 24(2), L69 (2010)

    Article  MathSciNet  Google Scholar 

  43. Oikonomou, T., Bagci, G.B.: The maximization of Tsallis entropy with complete deformed functions and the problem of constraints. Phys. Lett. A 374(22), 2225–2229 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rudas, I.J., Kaynak, M.O.: Entropy-based operations on fuzzy sets. IEEE Trans. Fuzzy Syst. 6(1), 33–40 (1998)

    Article  Google Scholar 

  45. Al-Sharhan, S., Karray, F., Gueaieb, W., Basir, O.: Fuzzy entropy: a brief survey. In: IEEE International Conference on Fuzzy Systems (2001)

  46. Chon, K.H., Scully, C.G., Sheng, L.: Approximate entropy for all signals. IEEE Eng. Med. Biol. Mag. 28(6), 18–23 (2009)

    Article  Google Scholar 

  47. Manthe, Uwe: The multi-configurational time-dependent hartree approach revisited. J. Chem. Phys. 142(24), 73 (2015)

    Article  Google Scholar 

  48. Lorenz, N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  49. Alsafasfeh, Q.H., Al-Arni, M.S.: A new chaotic behavior from Lorenz and Rossler systems and its electronic circuit implementation. Circuits Syst. 2(2), 101–105 (2011)

    Article  Google Scholar 

  50. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)

    Article  MATH  Google Scholar 

  51. Chen, G., Ueta, T.: Chaos synchronization in a noisy environment using Kalman filters. World Sci. Ser. Nonlinear Sci. Ser. 1142/4945(10), 509–527 (2002)

  52. Mehta, M.P., Sen, A.: Death island boundaries for delay-coupled oscillator chains. Phys. Lett. A 355(3), 202–206 (2006)

    Article  Google Scholar 

  53. Granger, C.W.J.: Long memory relationships and the aggregation of dynamic models. J. Econ. 14(2), 227–238 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Granger, C.W.J., Joyeux, R.: An introduction to long memory time series models and fractional differencing. J. Time 1(1), 15–29 (2010)

    MathSciNet  MATH  Google Scholar 

  55. Podobnik, B., Horvatic, D., Ng, A.L., Stanley, H.E., Ivanov, P.C.: Modeling long-range cross-correlations in two-component ARFIMA and FIARCH processes. Phys. A Stat. Mech. Appl. 387(15), 3954–3959 (2008)

    Article  MathSciNet  Google Scholar 

  56. Yang, A.C., Hseu, S., Yien, H.-W., Goldberger, A.L., Peng, C.: Linguistic analysis of the human heartbeat using frequency and rank order statistics. Phys. Rev. Lett. 90(10), 108103 (2003)

    Article  Google Scholar 

  57. Goldberger, A.L., Peng, C.K., Lipsitz, L.A.: What is physiologic complexity and how does it change with aging and disease? Neurobiol. Aging 23(1), 23–26 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from the Fundamental Research Funds for the Central Universities (2020YJS178), the funds of China Academy of Railway Science Cooperation Limited (2019YJ153) and the National Natural Science Foundation of China (61771035) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The data in the manuscript are available.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Shang, P. & Zhang, S. Complexity analysis of the time series using inverse dispersion entropy. Nonlinear Dyn 105, 499–514 (2021). https://doi.org/10.1007/s11071-021-06528-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06528-7

Keywords

Navigation