Skip to main content
Log in

Rounding error analysis of divided differences schemes: Newton’s divided differences; Neville’s algorithm; Richardson extrapolation; Romberg quadrature; etc.

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this note, we extend the analysis of Camargo (J. Comp. Appl. Math 365, 2020) on the numerical stability of classical Newton’s divided differences to a broader a class of divided differences algorithms that includes Neville’s algorithm for the Lagrange interpolation and some of its particular instances as the Richardson extrapolation and Romberg quadrature. We show that these algorithms are backward stable and we bound the overall numerical error in their computation in finite precision. Our analysis solves a subtle question in numerical Lagrange interpolation that passed unnoticed so far. On the one hand, the Richardson extrapolation and Romberg quadrature have been extensively described as divided differences schemes and their connections with Neville’s algorithm were already highlighted in the literature. On the other hand, the unique algorithm for computing Lagrange interpolants for which backward stability can be ensured (so far) for extrapolation is the first barycentric formula. By showing that Neville’s algorithm is also backward stable for extrapolation, our result consolidates a solid background for the usual representation of the Richardson extrapolation and Romberg quadrature as divided differences schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Although unlikely to occur in practice, we do not exclude this possibility.

References

  1. Bauer, F.L., Rutishauser, H., Stiefel, E.: New aspectsin numerical quadrature. Proc. Sympos. Appl. Maths., Vol. 15, American mathematical Society, Providence, RI, pp. 199–218 (1963)

  2. Brass, H., Fischer, J.W.: Error bounds in Romberg quadrature. Numer Math. 82, 389–408 (1999)

    Article  MathSciNet  Google Scholar 

  3. Brezinski, C.: Convergence acceleration during the 20th century. J. Comp. Appl. Math. 122, 1–21 (2000)

    Article  MathSciNet  Google Scholar 

  4. Bulirsch, R.: Bemerkungen zur Romberg-Integration. Numer. Math. 6, 6–16 (1964)

    Article  MathSciNet  Google Scholar 

  5. Camargo, A.: A divergent sequence of Romberg integrals, Submitted work

  6. Camargo, A.: On the numerical stability of Newton’s formula for Lagrange interpolation. T J. Comp. Appl. Math. 365. https://doi.org/10.1016/j.cam.2019.112369 (2020)

  7. Fischer, J.W.: Romberg quadrature using the Bulirsch sequence. Numer. Math. 90, 509–519 (2002)

    Article  MathSciNet  Google Scholar 

  8. Håvie, T.: Romberg integration as a problem in interpolation theroy. BIT 17, 418–429 (1977)

    Article  Google Scholar 

  9. Higham. N.: Accuracy and stability of numerical algorithms. Society for Industrial and Applied Mathematics., Philadelphia (2002)

  10. Higham, N: The numerical stability of barycentric Lagrange interpolation. IMA J. Num. Anal. 24, 547–556 (2004)

    Article  MathSciNet  Google Scholar 

  11. Joyce, D.C.: Survey of extrapolation processes in Numerical Analysis. SIAM Rev. 13(4), 435–490 (1971)

    Article  MathSciNet  Google Scholar 

  12. Laurie, D.P.: Propagation of initial rounding error in Romberg-like quadrature. BIT 15, 277–282 (1975)

    Article  MathSciNet  Google Scholar 

  13. Mascarenhas, W., Camargo, A: The effects of rounding errors in the nodes on barycentric interpolation. Numer. Math. 135 (1), 113–141 (2017). arXiv:1309.7970

    Article  MathSciNet  Google Scholar 

  14. Mascarenhas, W.F., Camargo, A.: The backward stability of the second barycentric formula for interpolation. Dolomites Res. Notes Appr. 7, 1–12 (2014). arXiv:1310.2516

    Google Scholar 

  15. Miller, J.C.P.: Neville’s and Romberg’s processes: a fresh appraisal with extensions. Phyl. Trans. Roy. Soc. Ser. A 263, 525–562 (1968)

    MathSciNet  MATH  Google Scholar 

  16. Shanks, J.A.: On forming the Romberg table. J. Comp. Appl. Math. 11, 343–351 (1984)

    Article  MathSciNet  Google Scholar 

  17. Smith, S.: Lebesgue constants in polynomial interpolation. Annales Mathematicae et Informaticae 33, 109–123 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 2nd edn. Springer, New York (1993)

    Book  Google Scholar 

  19. Webb, M., Trefethen, L., Gonnet, P.: Stability of barycentric interpolation formulas for extrapolation. SIAM J. Sci Comp. 34(6), A3009–A3015 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Pierro de Camargo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Camargo, A. Rounding error analysis of divided differences schemes: Newton’s divided differences; Neville’s algorithm; Richardson extrapolation; Romberg quadrature; etc.. Numer Algor 85, 591–606 (2020). https://doi.org/10.1007/s11075-019-00828-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00828-1

Keywords

Navigation