Skip to main content
Log in

Efficient simulation of optical nonlinear cavity circuits

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Recently, we proposed a node-based framework that can be used to simulate large circuits of nonlinear photonic components both in the time-domain and in the frequency-domain. In that framework, components are described using a flexible and very general ‘node’-definition, allowing to simulate circuits that contain a wide variety of components with different physical effects. In this paper, we extend the node-definition of this framework such that the linear coupling between access waveguides and resonance states in optical resonators can be more explicitly incorporated, reducing the simulation time in large-scale cavity circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander, K., Van Vaerenbergh, T., Fiers, M., Mechet, P., Dambre, J., Bienstman, P.: Excitability in optically injected microdisk lasers with phase controlled excitatory and inhibitory response. Opt. Express 21, 28922–28932 (2013)

    Article  Google Scholar 

  • Fiers, M., Van Vaerenbergh, T., Caluwaerts, K., Vande Ginste, D., Schrauwen, B., Dambre, J., Bienstman, P.: Time-domain and frequency-domain modeling of nonlinear optical components on circuit-level using a node-based approach. J. Opt. Soc. Am. B 29(5), 896–900 (2011)

    Article  ADS  Google Scholar 

  • Fiers, M., Van Vaerenbergh, T., Wyffels, F., Verstraeten, D., Schrauwen, B., Dambre, J., Bienstman, P.: Nanophotonic reservoir computing with photonic crystal cavities to generate periodic patterns. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 344–355 (2014)

    Article  Google Scholar 

  • Little, B.E., Chu, S.T., Haus, H.A., Foresi, J., Laine, J.-P.: Microring resonator channel dropping filters. J. Lightwave Technol. 15(6), 998–1005 (1997)

  • Maes, B., Fiers, M., Bienstman, P.: Self-pulsing and chaos in series of coupled nonlinear micro-cavities. Phys. Rev. B 80(1), 033805 (2009)

    Article  ADS  Google Scholar 

  • Santori, C., Pelc, J.S., Beausoleil, R.G., Tezak, N., Hamerly, R., Mabuchi, H.: Quantum noise in large-scale coherent nonlinear photonic circuits. Phys. Rev. Appl. 1(5), 054005 (2014)

    Article  ADS  Google Scholar 

  • Van Vaerenbergh, T., Fiers, M., Mechet, P., Spuesens, T., Kumar, R., Morthier, G., Schrauwen, B., Dambre, J., Bienstman, P.: Cascadable excitability in microrings. Opt. Express 20(18), 20292–20308 (2012)

    Article  ADS  Google Scholar 

  • Van Vaerenbergh, T., Alexander, K., Dambre, J., Bienstman, P.: Excitation transfer between optically injected microdisk lasers. Opt. Express 21(23), 28922–28932 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Van Vaerenbergh.

Additional information

This work is supported by the Human Brain Project, the IAP Photonics@be of the Belgian Science Policy Office and the ERC NaResCo Starting grant. T.V.V. is supported by the Flemish Research Foundation (FWO) for a Ph.D. Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Vaerenbergh, T., Fiers, M., Dambre, J. et al. Efficient simulation of optical nonlinear cavity circuits. Opt Quant Electron 47, 1471–1476 (2015). https://doi.org/10.1007/s11082-015-0123-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-015-0123-4

Keywords

Navigation