Skip to main content
Log in

Gold chloride cluster ions generated by vacuum laser ablation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, a simple way for study the possibility of formation a vapor cluster species of tetrachloroauric acid (HAuCl4), using the laser ablation in the absence of a buffer or reactive atmosphere, and without a postablation supersonic expansion on a commercial matrix assisted laser desorption/ionization time-of-flight mass spectrometer, is reported. Tetrachloroauric acid is known as precursor for the synthesis of gold nanostructures and the complex salts; therefore it is an important task to discover and quantify the species arising from HAuCl4, in order to understand their role in the gold assisted reactions. Mass spectrum of HAuCl4 in a reflector negative-ion mode contains the hydrated mono- and dinuclear gold clusters in the m/z range 286–436, and gold chloride clusters in the m/z range 447–795. In the first part of spectrum, m/z range 286–436, the hydrated gold cluster species of type Au n (H2O)m (n = 1–2; m = 1, 2, 5, 7, 8) and [Aun(OH)k](H2O)m (n = 1–2; k = 1–2; m = 1, 4–8) were found. Besides that, there are gold chloride clusters with general formula [AuHr(HCl)2](H2O)m (m = 1–5; 8–9; r = 0–2) in this part of spectrum. In the second part of spectrum, the m/z range 447–795, only gold chloride clusters were obtained. Their general formulae can be written as [AuClt(HCl)v](H2O)m (t = 1–4; v = 5–8; m = 2–4, 6–8) and [Aun(HCl)v](H2O)m (n = 1–2, v = 4–5, m = 1–2, 5, 7). The analysis of concentration effects on the LDI mass spectra of gold clusters reveals that the relative intensities of signals for the mono- and dinuclear Au clusters increase with decreasing the concentration of water HAuCl4 solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acton, Q.A.: Advances in Nanotechnology Research and Application: 2012 Edition. ScholarlyEditions, Atlanta (2012)

    Google Scholar 

  • Andrews, L., Wang, X.: Infrared spectra and structures of the stable CuH2 , AgH2 , AuH2 , and AuH4 anions and the AuH2 molecule. J. Am. Chem. Soc. 125, 11751–11760 (2003)

    Article  Google Scholar 

  • Arakelian, S., Emel’yanov, V., Kutrovskaya, S., Kucherik, A., Zimin, S.: Laser-induced semiconductor nanocluster structures on the solid surface: new physical principles to construct the hybrid elements for photonics. Opt. Quant. Electron. 48, 342 (2016a)

    Article  Google Scholar 

  • Arakelian, S., Kutrovskaya, S., Kucherik, A., Osipov, A., Povolotckaia, A., Povolotskiy, A., Manshina, A.: Laser-induced synthesis of nanostructured metal–carbon clusters and complexes. Opt. Quant. Electron. 48, 505 (2016b)

    Article  Google Scholar 

  • Bondybey, V.E., English, J.H.: Laser induced fluorescence of metal clusters produced by laser vaporization: gas phase spectrum of Pb2. J. Chem. Phys. 74, 6978 (1981)

    Article  ADS  Google Scholar 

  • Cheung, J., Horwitz, J.: Pulsed laser deposition history and laser–target interactions. MRS Bull. 17, 30–36 (1992). https://doi.org/10.1557/S0883769400040598

    Article  Google Scholar 

  • Daniel, M.C.M., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size related properties and applications toward biology, catalysis and nanotechnology. Chem. Rev. 104, 293–346 (2004). https://doi.org/10.1021/cr030698

    Article  Google Scholar 

  • Dietz, T.G., Duncan, M.A., Powers, D.E., Smalley, R.E.: Laser production of supersonic metal cluster beams. J. Chem. Phys. 74, 6511 (1981)

    Article  ADS  Google Scholar 

  • Gibson, J.K.: Laser ablation and gas-phase reactions of small gold cluster ions, Au +n (1 ≤ n ≤ 7). J. Vac. Sci. Technol. A 16, 653 (1998)

    Article  ADS  Google Scholar 

  • Hashimoto, S., Werner, D., Uwada, T.: Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J. Photochem. Photobiol. C Photochem. Rev. 13, 28–54 (2012)

    Article  Google Scholar 

  • Karas, M., Bachmann, D., Bahr, U., Hillenkamp, F.: Matrix-assisted ultraviolet laserdesorption of non-volatile compounds. Int. J Mass Spectrom. Ion Process. 78, 53 (1987)

    Article  ADS  Google Scholar 

  • Karataev, V.I.: Determining trace amounts of gold in natural samples and chemical compounds. Tech. Phys. Lett. 34, 1082–1084 (2008). https://doi.org/10.1134/S1063785008120286

    Article  ADS  Google Scholar 

  • Lemke, K.H.: Gold chloride clusters with Au(III) and Au(I) probed by FT-ICR mass spectrometry and MP2 theory. Phys. Chem. Chem. Phys. 16, 7813–7822 (2014). https://doi.org/10.1039/c3cp55109a

    Article  Google Scholar 

  • Liu, H.T., Wang, Y.L., Xiong, X.G., Dau, P.D., Piazza, Z.A., Huang, D.L., Xu, C.Q., Li, J., Wang, L.S.: The electronic structure and chemical bonding in gold dihydride: AuH2 and AuH2. Chem. Sci. 3, 3286 (2012)

    Article  Google Scholar 

  • Lowndes, D.H., Geohegan, D.B., Puretzky, A.A., Norton, D.P., Rouleau, C.M.: Synthesis of novel thin-film materials by pulsed laser deposition. Science 273, 898–903 (1996)

    Article  ADS  Google Scholar 

  • Lubman, D.M. (ed.): Lasers and mass spectrometry. Oxford University Press, New York (1990)

    Google Scholar 

  • McIndoe, J.S.: Laser synthesis of transition metal clusters. Transit. Met. Chem. 28, 122–131 (2003). https://doi.org/10.1023/A:1022515104991

    Article  Google Scholar 

  • Peña-Méndez, E.M., Hernández-Fernaud, J.R., Nagender, R., Houška, J., Havel, J.: The chemistry of gold clusters in plasma generated with MALDI, laser desorption ionization and laser ablation from various precursors. Chem. Listy 102, s1394–s1398 (2008)

    Google Scholar 

  • Schwerdtfeger, P., Boyd, P.D.W., Burrell, A.K., Robinson, W.T., Taylor, M.J.: Relativistic effects in gold chemistry. 3. Gold(I) complexes. Inorg. Chem. 29, 3593 (1990)

    Article  Google Scholar 

  • Yamashita, M., Fenn, J.B.: Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 88, 4451 (1984)

    Article  Google Scholar 

  • Wang, L.M., Wang, L.S.: Probing the electronic properties and structural evolution of anionic gold clusters in the gas phase. Nanoscale 4, 4038 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No. 172019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Rajčić.

Additional information

This article is part of the Topical Collection on Focus on Optics and Bio-photonics, Photonica 2017.

Guest Edited by Jelena Radovanovic, Aleksandar Krmpot, Marina Lekic, Trevor Benson, Mauro Pereira, Marian Marciniak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajčić, B., Dimitrijević, S.B., Petković, M. et al. Gold chloride cluster ions generated by vacuum laser ablation. Opt Quant Electron 50, 218 (2018). https://doi.org/10.1007/s11082-018-1476-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1476-2

Keywords

Navigation