Skip to main content
Log in

A model of Gaussian laser beam self-trapping in optical tweezers for nonlinear particles

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The optical tweezers are used to trap the particles embedded in a suitable fluid. The optical trap efficiency is significantly enhanced for nonlinear particles which response to the Kerr effect. The optical transverse gradient force makes these particles’ mass density in trapping region increasing, and the Kerr medium can be created. When the laser Gaussian beam propagates through it, the self-focusing, and consequently self-trapping can appear. In this paper, a model describing the laser self-trapping in nonlinear particle solution of optical tweezers is proposed. The expressions for the Kerr effect, effective refractive index of nonlinear particle solution and the intensity distribution of reshaped Gaussian laser beam are derived, and the self-trapping of laser beam is numerically investigated. Finally, the guide properties of nonlinear particles-filled trapping region and guiding condition are analysed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmed, F., Ahsani, V., Jo, S., Bredley, C., Toyserkani, E., G, M.B.: Measurement of in-fiber refractive index change using a mach-zehnder interferometer. IEEE Photon. Technol. Lett. 31, 74–77 (2019)

    Article  ADS  Google Scholar 

  • Ashkin, A.: Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J . 61(2), 569–582 (2002)

    Article  Google Scholar 

  • Badran, H.A., Hassan, Q.M.A., Al-Ahmad, A.Y., Emshary, C.A.: Laser-induced optical nonlinearities in orange G dye: polyacrylamide gel. Can. J. Phys. 89(12), 1219–1224 (2011)

    Article  ADS  Google Scholar 

  • Cooper, A. et al.: Alkaline-Earth Atoms in Optical Tweezers, Phys. Rev. X 8 (2018) 041055

  • Couris, S., Renard, M., Faucher, O., Lavorel, B., Chaux, R., Koudoumas, E., Michaut, X.: An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques. Chem. Phys. Lett. 369, 318–324 (2003)

    Article  ADS  Google Scholar 

  • Devi, A., De, A.K.: Theoretical investigation on nonlinear optical effects in laser trapping of dielectric nanoparticles with ultrafast pulsed excitation. Opt. Exp. 24(19), 21485–21496 (2016)

    Article  ADS  Google Scholar 

  • Gautam, R., et al.: Optical force-induced nonlinearity and self guiding of light in human red blood cell suspensions. Light Sci. Appl. 8, 1–9 (2019)

    Article  Google Scholar 

  • Ho Q., Quang, Th. Thai Doan, T. Doan Quoc, V. Do Thanh, K. Bui Xuan, L. Ly Nguyen, and T. Nguyen Manh, (2020) Nonlinear microscope objective using thin layer of organic dye for optical tweezers, Eur. Phys. J. D 74:52.

  • Jiang, Y., Narushima, T., Okamoto, H.: Nonlinear optical effects in trapping nanoparticles with femtosecond pulses. Nat. Phys. 6, 1005–1009 (2010)

    Article  Google Scholar 

  • Kim, H. K., Joo, I-J., Song, S_H., Kim, P-S., Im, K-B. and Oh, C-H., Dependence of the Optical Trapping Efficiency on the Ratio of the Beam Radius-to-the Aperture Radius, J. Korean Phys. Soc. 43 (3) (2003) 348-351

  • Lamhot, Y., Barak, A., Peleg, O. and Segev, M. (2010) Self-trapping of optical beam through thermophoresis, Phys. Rev. Lett. 105 163906

  • Li, H., Qi, Y., Malallah, R., Ryle, J.P., Sheridan, J.T.: Self-trapping of optical beams in a self-written channel in a solid bulk photopolymer material. Proc. of SPIE 9508, 95080F (2015)

    ADS  Google Scholar 

  • MacDonald, M.P., Peterson, I., Sibbett, W., Dholakia, K.: Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap. Opt. Lett. 26, 863–865 (2002)

    Article  ADS  Google Scholar 

  • Nam, H.V., Le, C.T., Quy, H.Q.: The influence of the self-focusing effect on the optical force acting on dielectric particle embedded in Kerr medium. Commun. Phys., ISSN 0868–3166(23), 155–161 (2013)

    Article  Google Scholar 

  • Nguyen, L.T., et al.: The numerical methods for analyzing the Z-scan data. J. Nonlinear Optic. Phys. Mat. 23, 1450020 (2014)

    Article  ADS  Google Scholar 

  • Quy, H.Q.: Nonlinear optical tweezers as an optical method for control particles with high trap efficiency. Commun.phys. 29, 197–214 (2019)

    Article  Google Scholar 

  • Quy H. Q. and Nam H. V., (2012) Influence of the Kerr effect on the optical force acting on the dielectric particle. Journal of Physical Science and Application, ISSN 2159 5348, 2(10): 414- 419

  • Quy H. Q., Thang, N. M., and Sau, V. N. (2004) Creating free spatial soliton from Gaussian beam by Kerr Medium, Commun. Phys. Supplement pag.91–95.

  • Quy H.Q., Hai H.D., Luu M.V., The Influence of Parameters on Stable-time “Pillar” in Optical Tweezer using Counter-propagating Pulsed Laser Beams, Computational methods for Science and Technology, Special Isue 2 (Poland) (2010) 61–66.

  • Quang, Quy Ho, Doan, Thanh Thai, Quoc, Tuan Doan, Manh, Thang Nguyen: Nonlinear optical tweezers for longitudinal control of dielectric particles. Opt. Commun. 421, 94–98 (2018)

    Article  ADS  Google Scholar 

  • Quang, Quy Ho, Doan, Thanh Thai, Quoc, Tuan Doan, Manh, Thang Nguyen: Enhance of optical trapping efficiency by nonlinear optical tweezers. Opt. Commun. 427, 341–347 (2018)

    Article  ADS  Google Scholar 

  • Saleh, B.E., Teich, M.C.: Fundamentals of photonics: ray optics, pp. 1–40. John Wiley & Sons, INC., New York (1998)

    Google Scholar 

  • Thai Dinh, T., Doan Quoc, K., Bui Xuan, K., Ho Quang, Q.: 3D controlling the bead linking to DNA molecule in a single-beam nonlinear optical tweezers. Opt. Quant Electron. 48, 1–15 (2016)

    Article  ADS  Google Scholar 

  • Van Nguyen, T., Ho Quang, Q., Van Chu, L.: Ultrasonic-controlled microlens arrays in germanium for optical tweezers to sieve the micro-particles. Commun. Phys. 25, 157–163 (2015)

    Article  Google Scholar 

  • Volpe, G., Volpe, G.: Simulation of Brownian particle in an optical trap. Am. J. Phys. 81, 224–230 (2013)

    Article  ADS  Google Scholar 

  • Wilkes, Z.W., Varma, S., Chen, Y.-H., Milchberg, H.M., Jones T.G. and Ting, A. (2009) Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using-shot supercontinuum spectral interferometry, Appl. Phys. Let. 94, 211102.

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.03–2018.342.

Author information

Authors and Affiliations

Authors

Contributions

The idea was proposed by Quy Ho Quang, and Thang Nguyen Manh, the results were done and analysed by Thang Nguyen Manh, Quy Ho Quang. The paper was written by all authors.

Corresponding author

Correspondence to Thang Nguyen Manh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quang, Q.H., Doan, T.T., Xuan, K.B. et al. A model of Gaussian laser beam self-trapping in optical tweezers for nonlinear particles. Opt Quant Electron 53, 418 (2021). https://doi.org/10.1007/s11082-021-03074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03074-9

Keywords

Navigation