Skip to main content
Log in

Efficient tunable plasmonic mode converters infiltrated with nematic liquid crystal layers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

A Correction to this article was published on 06 August 2021

This article has been updated

Abstract

This paper presents two efficient tunable plasmonic mode converters in the infrared regime. The proposed configurations consist of silver layer with etched rectangular holes as metal insulator metal waveguides with central cavities. The holes are infiltrated by nematic liquid crystal (NLC) material to increase the transmission through the suggested designs. Additionally, the NLC is used to have tunable operation where the modes at the output port can be controlled. The simulations are carried out using full vectorial finite element method. The first design has a single output port which converts the TM mode into the TEM mode with high transmission conversion efficiency of 70%. Further, the second structure allows the generation of the two plasmonic modes simultaneously in two output waveguides. During the biased state, the s- mode transmission conversion efficiency reaches 50% while the transmission of a- mode at the unbiased state is equal to 49%. It is expected that the proposed tunable mode converters will play an important role in the development of the plasmonic-photonic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  • Areed, N.F., Hussien, M., Obayya, S.S.: Reconfigurable coupler-based metallic photonic crystal lens and nematic liquid crystal. JOSA B 35(10), 2459–2466 (2018)

    Article  ADS  Google Scholar 

  • Borshch, V., Shiyanovskii, S.V., Lavrentovich, O.D.: Nanosecond electro-optic switching of a liquid crystal. Phys. Rev. Lett. 111(10), 107802 (2013)

    Article  ADS  Google Scholar 

  • COMSOL Multiphysics Software; https://www.comsol.com

  • Chen, Q., Wang, Y., Wu, Y.: Integer-programming model for plasmonic waveguide demultiplexers. Plasmonics 10(2), 329–334 (2015)

    Article  Google Scholar 

  • Cheng, Z., Wang, J., Yang, Z., Yin, H., Wang, W., Huang, Y., Ren, X.: Broadband and high extinction ratio mode converter using the tapered hybrid plasmonic waveguide. IEEE Photon. J. 11(3), 1–8 (2019)

    Article  Google Scholar 

  • Dagens, B., Février, M., Gogol, P., Blaize, S., Apuzzo, A., Magno, G., Lérondel, G.: Direct observation of optical field phase carving in the vicinity of plasmonic metasurfaces. Nano Lett. 16(7), 4014–4018 (2016)

    Article  ADS  Google Scholar 

  • Desmet, H., Neyts, K., Baets, R.: Liquid crystal orientation on patterns etched in Silicon on Insulator. In: Integrated Optics, Silicon Photonics, and Photonic Integrated Circuits (Vol. 6183, p. 61831Z). International Society for Optics and Photonics. (2006)

  • Dionne, J.A., Sweatlock, L.A., Atwater, H.A., Polman, A.: Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73(3), 035407 (2006)

    Article  ADS  Google Scholar 

  • El-Rabiaey, M.A., Areed, N.F., Obayya, S.S.: Novel plasmonic data storage based on nematic liquid crystal layers. J. Lightw. Technol. 34(16), 3726–3732 (2016)

    Article  ADS  Google Scholar 

  • Eskalen, H., Özğan, Ş., Alver, Ü., & Kerli, S.: Electro-optical properties of liquid crystals composite with zinc oxide nanoparticles. Acta Phys. Polon. A., 127(3) (2015)

  • Fernández-Domínguez, A.I., Moreno, E., Martín-Moreno, L., García-Vidal, F.J.: Terahertz wedge plasmon polaritons. Opt. Lett. 34(13), 2063–2065 (2009)

    Article  ADS  Google Scholar 

  • Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photon. 4(2), 83 (2010)

    Article  ADS  Google Scholar 

  • Haakestad, M.W., Alkeskjold, T.T., Nielsen, M.D., Scolari, L., Riishede, J., Engan, H.E., Bjarklev, A.: Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber. IEEE Photon. Technol. Lett. 17(4), 819–821 (2005)

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Obayya, S.S.A.: Polarization rotator based on soft glass photonic crystal fiber with liquid crystal core. J. Lightw. Technol. 29(18), 2725–2731 (2011a )

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Obayya, S.S.: Modal analysis of a novel soft glass photonic crystal fiber with liquid crystal core. J. Lightw. Technol. 30(1), 96–102 (2011b)

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Obayya, S.S.A., Wiltshire, R.J.: Beam propagation analysis of polarization rotation in soft glass nematic liquid crystal photonic crystal fibers. IEEE Photon. Technol. Lett 22 (3), 188–190 (2010)

  • Hameed, M.F.O., Alrayk, Y.K.A., Shaalan, A.A., Deeb, E., Obayya, W.S.: Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. J .Nanophoton. 10(4), 046016 (2016)

    Article  Google Scholar 

  • Hameed, M.F.O., Saadeldin, A.S., Elkaramany, E.M.A., Obayya, S.S.A.: Label-free highly sensitive hybrid plasmonic biosensor for the detection of DNA hybridization. J. Lightwave Technol. 35(22), 4851–4858 (2017)

    Article  ADS  Google Scholar 

  • Heikal, A.M., Hameed, M.F.O., Obayya, S.S.: A.: Improved trenched channel plasmonic waveguide. J. Lighw. Technol. 31(13), 2184-2191 (2013)

  • Hung, Y.T., Huang, C.B., Huang, J.S.: Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction. Opt. Exp. 20(18), 20342–20355 (2012)

    Article  ADS  Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972)

    Article  ADS  Google Scholar 

  • Kim, J., Lee, S.Y., Park, H., Lee, K., Lee, B.: Reflectionless compact plasmonic waveguide mode converter by using a mode-selective cavity. Opt. Exp. 23(7), 9004–9013 (2015)

    Article  ADS  Google Scholar 

  • Kong, X.T., Li, Z.B., Tian, J.G.: Mode converter in metal-insulator-metal plasmonic waveguide designed by transformation optics. Opt. Exp. 21(8), 9437–9446 (2013)

    Article  ADS  Google Scholar 

  • Krasavin, A.V., Zayats, A.V.: Guiding light at the nanoscale numerical optimization of ultrasubwavelength metallic wire plasmonic waveguides. Opt. Lett. 36(16), 3127–3129 (2011)

    Article  ADS  Google Scholar 

  • Lee, D.J., Yim, H.D., Lee, S.G., Beom- Hoan, O.: Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide. Opt. Exp. 19(21), 19895–19900 (2011)

    Article  ADS  Google Scholar 

  • Lee, J., Song, J., Sung, G.Y., Shin, J.H.: Plasmonic waveguide ring resonators with 4 nm air gap and λ02/15 000 mode-area fabricated using photolithography. Nano Lett. 14(10), 5533–5538 (2014)

    Article  ADS  Google Scholar 

  • Li, J., Wu, S.T., Brugioni, S., Meucci, R., Faetti, S.: Infrared refractive indices of liquid crystals. J. Appl. Phys. 97(7), 073501 (2005)

    Article  ADS  Google Scholar 

  • Maier, S.A., Kik, P.G., Atwater, H.A.: Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss. Appl. Phys. Lett. 81(9), 1714–1716 (2002)

    Article  ADS  Google Scholar 

  • Moreno, E., Garcia-Vidal, F.J., Rodrigo, S.G., Martin-Moreno, L., Bozhevolnyi, S.I.: Channel plasmon-polaritons modal shape, dispersion, and losses. Opt. Lett. 31(23), 3447–3449 (2006)

    Article  ADS  Google Scholar 

  • Obayya, S., Areed, N.F.F., Hameed, M.F.O., Abdelrazik, M.H.: Optical nano-antennas for energy harvesting, Innovative Materials and Systems for Energy Harvesting Applications, 26–62 (2015)

  • Ohana, D., Levy, U.: Mode conversion based on dielectric metamaterial in silicon. Opt. Exp. 22(22), 27617–27631 (2014)

    Article  ADS  Google Scholar 

  • Pan, D., Wei, H., Jia, Z., Xu, H.: Mode conversion of propagating surface plasmons in nanophotonic networks induced by structural symmetry breaking. Sci. Rep. 4, 4993 (2014)

    Article  ADS  Google Scholar 

  • Ren, G., Shum, P., Yu, X., Hu, J., Wang, G., Gong, Y.: Polarization dependent guiding in liquid crystal filled photonic crystal fibers. Opt. Commun. 281(6), 1598–1606 (2008)

    Article  ADS  Google Scholar 

  • Siegfried, T., Ekinci, Y., Solak, H.H., Martin, O.J., Sigg, H.: Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors. Appl. Phys. Lett. 99(26), 280 (2011)

    Article  Google Scholar 

  • Sun, S., Chen, H.T., Zheng, W.J., Guo, G.Y.: Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems. Opt. Exp. 21(12), 14591–14605 (2013)

    Article  ADS  Google Scholar 

  • Tao, J., Wang, Q.J., Huang, X.G.: All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6(4), 753 (2011)

    Article  Google Scholar 

  • Veronis, G., Fan, S.: Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl. Phys. Lett. 87(13), 131102 (2005)

    Article  ADS  Google Scholar 

  • Wang, Y., Hong, X.: Mode conversion of metal–insulator–metal waveguide with gradient thickness medium. IEEE Photon. Technol. Lett. 29(17), 1443–1446 (2017)

    Article  ADS  Google Scholar 

  • Wang, Y., Yan, X.: Mode conversion in metal–insulator–metal waveguide with a shifted cavity. Jpn. J. Appl. Phys. 57(1), 010303 (2018)

    Article  ADS  Google Scholar 

  • Wei, L., Alkeskjold, T.T., Bjarklev, A.: Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber. IEEE Photon. Technol. Lett. 21(21), 1633–1635 (2009)

    Article  ADS  Google Scholar 

  • Wen, K., Yan, L., Pan, W., Luo, B., Guo, Z., Guo, Y.: Wavelength demultiplexing structure based on a plasmonic metal–insulator–metal waveguide. J. Opt. 14(7), 075001 (2012)

    Article  ADS  Google Scholar 

  • Wolinski, T.R., Szaniawska, K., Bondarczuk, K., Lesiak, P., Domanski, A.W., Dabrowski, R., Wojcik, J.: Propagation properties of photonic crystal fibers filled with nematic liquid crystals. Optoelectron. Rev. 13(2), 177 (2005)

    Google Scholar 

  • Zayats, A.V., Smolyaninov, I.I., Maradudin, A.A.: Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3–4), 131–314 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Farhat O. Hameed or Salah S. A. Obayya.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In the original publication of the article, the article title was published with an error and the author name Salah S. A. Obayya was incorrectly written as Salah S. A. Salah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabeel, R.H., Areed, N.F.F., Hameed, M.F.O. et al. Efficient tunable plasmonic mode converters infiltrated with nematic liquid crystal layers. Opt Quant Electron 53, 436 (2021). https://doi.org/10.1007/s11082-021-03086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03086-5

Keywords

Navigation