Skip to main content
Log in

Structural Evolution of a Ni Alloy Surface During High-Temperature Oxidation

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

We show that considerable structural transformations occur at a Ni alloy surface during the transient stages of high-temperature oxidation. This was demonstrated by exposing the alloy to high-temperature CO2 for short times at both atmospheric and supercritical pressures. A protective Cr-rich oxide layer formed after only 5 min at 700 °C and persisted for longer exposures up to 500 h. Voids formed and grew over time by the condensation of metal vacancies generated during oxidation, while the alloy surface recrystallized after sufficient oxidation had occurred. The oxygen potential established at the oxide/alloy interface led to oxidation along the newly formed grain boundaries as well as adjacent to and inside of the voids. Al, the most stable oxide-former and present at low concentration in the alloy, was preferentially oxidized in these regions. The results provide an improved understanding of the internal oxidation of Al and its role in enhancing scale adhesion for this class of Ni alloys.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Publication Number SMC-029, “INCONEL® alloy 617”, in, Vol. SMC-029, (Special Metals Corporation, 2005),p. 12.

  2. J. Wright, Next generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan, (Idaho National Laboratory (INL), 2010).

  3. H.-J. Christ, U. Künecke, K. Meyer and H. Sockel, Oxidation of Metals 30, 1988 (27).

    Article  Google Scholar 

  4. L. Graham, Journal of Nuclear Materials 171, 1990 (76).

    Article  Google Scholar 

  5. C. Cabet, A. Terlain, P. Lett, L. Guetaz and J. M. Gentzbittel, Materials and Corrosion 57, 2006 (147).

    Article  Google Scholar 

  6. C. Cabet, et al., Journal of Nuclear Materials 375, 2008 (173). https://doi.org/10.1016/j.jnucmat.2007.11.006.

    Article  Google Scholar 

  7. C. Jang, D. Lee and D. Kim, International Journal of Pressure Vessels and Piping 85, 2008 (368). https://doi.org/10.1016/j.ijpvp.2007.11.010.

    Article  Google Scholar 

  8. T. S. Jo, S.-H. Kim, D.-G. Kim, J. Y. Park and Y. D. Kim, Metals and Materials International 14, 2008 (739). https://doi.org/10.3365/met.mat.2008.12.739.

    Article  Google Scholar 

  9. D. Kim, C. Jang and W. S. Ryu, Oxidation of Metals 71, 2009 (271).

    Article  Google Scholar 

  10. T. S. Jo, J. H. Lim and Y. D. Kim, Journal of Nuclear Materials 406, 2010 (360). https://doi.org/10.1016/j.jnucmat.2010.09.027.

    Article  Google Scholar 

  11. R. R. Adharapurapu, D. Kumar, J. Zhu, C. J. Torbet, G. S. Was and T. M. Pollock, Metallurgical and Materials Transactions A 42, 2011 (1229). https://doi.org/10.1007/s11661-010-0503-0.

    Article  Google Scholar 

  12. C. Jang, D. Kim, D. Kim, I. Sah, W.-S. Ryu and Y.-S. Yoo, Transactions of Nonferrous Metals Society of China 21, 2011 (1524). https://doi.org/10.1016/S1003-6326(11)60891-1.

    Article  Google Scholar 

  13. D. Kim, I. Sah, D. Kim, W.-S. Ryu and C. Jang, Oxidation of Metals 75, 2011 (103). https://doi.org/10.1007/s11085-010-9223-5.

    Article  Google Scholar 

  14. D. Kumar, R. R. Adharapurapu, T. M. Pollock and G. S. Was, Metallurgical and Materials Transactions A 42, 2011 (1245). https://doi.org/10.1007/s11661-011-0603-5.

    Article  Google Scholar 

  15. W.-G. Kim, G.-G. Lee, J.-Y. Park, S.-D. Hong and Y.-W. Kim, Procedia Engineering 55, 2013 (819). https://doi.org/10.1016/j.proeng.2013.03.337.

    Article  Google Scholar 

  16. G. Gulsoy, Mechanism of internal oxidation of Alloy 617 in controlled impurity helium environments at high temperatures. (University of Michigan, 2014).

  17. G.-G. Lee, S. Jung, D. Kim, Y.-W. Jeong and D.-J. Kim, Nuclear Engineering and Design 271, 2014 (301). https://doi.org/10.1016/j.nucengdes.2013.11.051.

    Article  Google Scholar 

  18. G. Gulsoy and G. S. Was, Corrosion Science 90, 2015 (529). https://doi.org/10.1016/j.corsci.2014.10.042.

    Article  Google Scholar 

  19. H. J. Lee, I. Sah, D. Kim, H. Kim and C. Jang, Journal of Nuclear Materials 456, 2015 (220). https://doi.org/10.1016/j.jnucmat.2014.09.043.

    Article  Google Scholar 

  20. R. P. Oleksak, J. P. Baltrus, J. Nakano, A. Nakano, G. R. Holcomb and Ö. N. Doğan, Corrosion Science 125, 2017 (77). https://doi.org/10.1016/j.corsci.2017.06.005.

    Article  Google Scholar 

  21. B.A. Pint, J. Keiser, The effect of temperature on the sCO2 compatibility of conventional structural alloys. In 4th International Symposium-Supercritical CO 2 Power Cycles (Citeseer, Pittsburgh 2014), p. 1.

  22. G. R. Holcomb, C. Carney and Ö. N. Doğan, Corrosion Science 109, 2016 (22). https://doi.org/10.1016/j.corsci.2016.03.018.

    Article  Google Scholar 

  23. H. J. T. Ellingham, Journal of the Society of Chemical Industry 63, 1944 (125).

    Article  Google Scholar 

  24. H. E. Evans, Materials Science and Technology 4, 1988 (1089). https://doi.org/10.1179/mst.1988.4.12.1089.

    Article  Google Scholar 

  25. G. B. Gibbs and R. Hales, Corrosion Science 17, 1977 (487). https://doi.org/10.1016/0010-938X(77)90004-X.

    Article  Google Scholar 

  26. E. Kirkendall, Aime Trans 147, 1942 (104).

    Google Scholar 

  27. C. Desgranges, F. Lequien, E. Aublant, M. Nastar and D. Monceau, Oxidation of Metals 79, 2013 (93).

    Article  Google Scholar 

  28. C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, 1971 (1782). https://doi.org/10.1149/1.2407837.

    Article  Google Scholar 

  29. D. Naumenko, W. Quadakkers, A. Khanna, Reactive element additions in high temperature alloys and coatings. In High Temperature Corrosion. (World Scientific, 2016), p. 245.

  30. P. Hou and J. Stringer, Oxidation of Metals 34, 1990 (299).

    Article  Google Scholar 

  31. X. Wang, F. Fan, J. A. Szpunar and L. Zhang, Materials Characterization 107, 2015 (33).

    Article  Google Scholar 

  32. I. G. Wright and R. Dooley, International Materials Reviews 55, 2010 (129).

    Article  Google Scholar 

  33. G. R. Holcomb, Oxidation of Metals 82, 2014 (271).

    Article  Google Scholar 

  34. P. Kofstad, Growth and protective properties of chromia (Cr2O3) and alumina (Al2O3) scales, protective coatings. In: High Temperature Corrosion. (Elsevier Applied Science, New York, 1988), p. 400.

  35. M. Cox, B. McEnaney and V. Scott, Philosophical Magazine 28, 1973 (309).

    Article  Google Scholar 

  36. L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Bosonnet, G. Picard and G. Santarini, Corrosion Science 50, 2008 (2537). https://doi.org/10.1016/j.corsci.2008.06.051.

    Article  Google Scholar 

  37. F. Rouillard, G. Moine, L. Martinelli and J. C. Ruiz, Oxidation of Metals 77, 2012 (27). https://doi.org/10.1007/s11085-011-9271-5.

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed in support of the US Department of Energy’s Fossil Energy Crosscutting Technology Research and Advanced Turbine Programs. The Research was executed through NETL Research and Innovation Center’s Advanced Alloy Development Field Work Proposal. This research was supported in part by an appointment (RPO) to the NETL Research Participation Program sponsored by the US Department of Energy and administered by the Oak Ridge Institute for Science and Education. Research performed by AECOM Staff was conducted under the RES contract DE-FE-0004000. The authors thank Dr. Jinichiro Nakano and Dr. Anna Nakano for performing the high-temperature confocal scanning laser microscope (5 min) exposure in the Corrosion Electrochemistry Laboratory at NETL.

Disclaimer

This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with AECOM. Neither the United States Government nor any agency thereof, nor any of their employees, nor AECOM, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Oleksak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oleksak, R.P., Carney, C.S., Holcomb, G.R. et al. Structural Evolution of a Ni Alloy Surface During High-Temperature Oxidation. Oxid Met 90, 27–42 (2018). https://doi.org/10.1007/s11085-017-9821-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9821-6

Keywords

Navigation