Skip to main content

Advertisement

Log in

Oxidation Behavior of Welded Fe-Based and Ni-Based Alloys in Supercritical CO2

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Next-generation supercritical CO2 (sCO2) power cycles will require different classes of alloy throughout the operational temperatures to optimize tradeoff of creep strength, oxidation performance and cost. This will necessitate joining methods such as welding, which might pose compatibility concerns at the joined interfaces. In this study, similar and dissimilar metal welds were generated from a variety of candidate alloys for sCO2 systems including ferritic/martensitic steels, austenitic steels, and Ni-based superalloys. Samples were extracted from different regions of the welds and exposed to sCO2 at 550 °C and 20 MPa for 2500 h and then characterized to understand their behavior in this environment. Unsurprisingly, the local oxidation behavior was largely dictated by the Cr content in the underlying metal. High-Cr austenitic steels and Ni alloys formed slow-growing Cr-rich oxide scales with minimal carburization of the underlying metal, while low-Cr ferritic/martensitic steels formed fast-growing Fe-rich oxide scales with significant carburization. Most welds did not show any unusual oxidation behavior at the interfaces, considering the local Cr content. The one exception was the 347H similar metal weld, where a larger grain size and complex grain structure in the fusion zone led to a significantly higher rate of Fe-rich oxide nodule formation compared to the base metal. This suggests that microstructural changes at joined interfaces can play an important role on the oxidation-limited lifetimes in future sCO2 systems. The composition changes across the interfaces enabled study of the effect of Fe on the growth rate of Cr-rich oxides and of the origins of the subsurface recrystallization zone that forms beneath them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Brun, P. Friedman, and R. Dennis, Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles, (Woodhead Publishing, Sawston, 2017).

    Google Scholar 

  2. R. P. Oleksak, J. H. Tylczak, C. S. Carney, G. R. Holcomb, and Ö. N. Doğan, JOM 70, 2018 (1527).

    Article  CAS  Google Scholar 

  3. B.A. Pint, R. Pillai, M.J. Lance, J.R. Keiser, Oxidation of Metals, 2020 (1).

  4. H. J. Lee, H. Kim, S. H. Kim, and C. Jang, Corrosion Science 99, 2015 (227).

    Article  CAS  Google Scholar 

  5. V. Firouzdor, K. Sridharan, G. Cao, M. Anderson, and T. R. Allen, Corrosion Science 69, 2013 (281).

    Article  CAS  Google Scholar 

  6. R. I. Olivares, D. J. Young, T. D. Nguyen, and P. Marvig, Oxidation of Metals 90, 2018 (1).

    Article  CAS  Google Scholar 

  7. B. Adam, L. Teeter, J. Mahaffey, M. Anderson, L. Árnadóttir, and J. D. Tucker, Oxidation of Metals 90, 2018 (453).

    Article  CAS  Google Scholar 

  8. Y. Gui, Z. Liang, H. Shao, Q. Zhao, Corrosion Science, 2020 (108870).

  9. M. H. S. Bidabadi, et al., Corrosion Science 177, 2020 (108950).

    Article  CAS  Google Scholar 

  10. K.E. Nygren, Z. Yu, F. Rouillard, A. Couet, Corrosion Science 163, 2019 (108292).

    Article  Google Scholar 

  11. F. Rouillard and T. Furukawa, Corrosion Science 105, 2016 (120).

    Article  CAS  Google Scholar 

  12. J.P. Shingledecker, S.C. Kung, I.G. Wright: Predicting the Oxidation/Corrosion Performance of Structural Alloys in Supercritical CO2. in., Electric Power Research Institute (2017)

  13. R.P. Oleksak, F. Rouillard: Materials performance in CO2 and supercritical CO2. In: Konings, R.J.M., Stoller, R.E. (eds.) Comprehensive Nuclear Materials, 2nd Edition, vol. 4. pp. 422. Oxford: Elsevier (2020). https://doi.org/10.1016/B978-0-12-803581-8.11622-4

  14. J.R. Davis: Corrosion of weldments. ASM international, (2006)

  15. C. S. Carney, R. P. Oleksak, M. Kapoor, G. R. Holcomb, and Ö. N. Doğan, Materials at High Temperatures 37, 2020 (445).

    Article  CAS  Google Scholar 

  16. A. M. Brittan, J. Mahaffey, M. Anderson, and K. Sridharan, Materials Science and Engineering: A 742, 2019 (414).

    Article  CAS  Google Scholar 

  17. A. Brittan, J. Mahaffey, and M. Anderson, Materials Science and Engineering: A 759, 2019 (770).

    Article  CAS  Google Scholar 

  18. H. J. Lee, S. H. Kim, and C. Jang, Materials Characterization 138, 2018 (245).

    Article  CAS  Google Scholar 

  19. H. Chen, S. H. Kim, and C. Jang, Journal of Materials Science 55, 2020 (3652).

    Article  CAS  Google Scholar 

  20. S. H. Kim, J.-H. Cha, C. Jang, and I. Sah, Metals 10, 2020 (480).

    Article  CAS  Google Scholar 

  21. R. P. Oleksak, C. S. Carney, G. R. Holcomb, and Ö. N. Doğan, Oxidation of Metals 90, 2017 (27).

    Article  Google Scholar 

  22. R. P. Oleksak, G. R. Holcomb, C. S. Carney, L. Teeter, and Ö. N. Doğan, Oxidation of Metals 92, 2019 (525).

    Article  CAS  Google Scholar 

  23. D. J. Young, High Temperature Oxidation and Corrosion of Metals, 2nd ed (Elsevier, 2016).

    Google Scholar 

  24. Z. Tőkei, K. Hennesen, H. Viefhaus, and H. J. Grabke, Materials Science and Technology 16, 2000 (1129).

    Article  Google Scholar 

  25. D. J. Young and J. Zhang, JOM 70, 2018 (1493).

    Article  CAS  Google Scholar 

  26. T. D. Nguyen, J. Zhang, and D. J. Young, Oxidation of Metals 87, 2017 (541).

    Article  CAS  Google Scholar 

  27. B. A. Pint, K. A. Unocic, R. G. Brese, and J. R. Keiser, Materials at High Temperatures 35, 2017 (39).

    Article  Google Scholar 

  28. T. Gheno, C. Desgranges, L. Martinelli, Corrosion Science 173, 2020 (108805).

    Article  CAS  Google Scholar 

  29. R. P. Oleksak, J. H. Tylczak, G. R. Holcomb, and Ö. N. Doğan, Corrosion Science 164, 2020 (108316).

    Article  CAS  Google Scholar 

  30. R.I. Olivares, W. Stein, T.D. Nguyen, D.J. Young: Corrosion of Nickel-Base Alloys by Supercritical CO2, in Advances in Materials Technology for Fossil Power Plants, (Albufeira, Algarve, Portugal), pp. 888

Download references

Acknowledgements

This work was performed in support of the U.S. Department of Energy’s Fossil Energy Crosscutting Technology Research Program. The Research was executed through the National Energy Technology Laboratory Research and Innovation Center’s Advanced Alloy Development Field Work Proposal. This research was supported in part by appointment (LT) to the National Energy Technology Laboratory Research Participation Program sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education (ORISE). We thank Christopher McKaig (NETL) and Matthew Fortner (NETL) for metallographic preparation of the sample cross-sections and Peter Eschbach (Oregon State University) for performing the EBSD analysis. Welding of the alloys was performed at Edison Welding Institute.

Funding

This work was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through an NETL Support Contractor. Neither the United States Government nor any agency thereof, nor any of their employees, nor the contractor, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Oleksak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 184 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oleksak, R.P., Carney, C.S., Teeter, L. et al. Oxidation Behavior of Welded Fe-Based and Ni-Based Alloys in Supercritical CO2. Oxid Met 97, 123–139 (2022). https://doi.org/10.1007/s11085-021-10080-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-021-10080-5

Keywords

Navigation