Skip to main content
Log in

Spray Dried Smectite Clay Particles as a Novel Treatment against Obesity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To explore the feasibility of spray dried smectite clay particles fabricated from montmorillonite or laponite materials for adsorbing dietary lipids and reducing rodent weight gain in vivo.

Methods

Spray dried montmorillonite (SD-MMT) and spray dried laponite (SD-LAP) particles were prepared via spray drying. Particle morphology, surface area and redispersion/aggregation properties in aqueous media were characterized. The ability of SD-MMT and SD-LAP particles to inhibit lipid digestion kinetics and adsorb lipid species from solution was assessed during in vitro lipolysis using proton nuclear magnetic resonance analysis. SD-MMT and SD-LAP particles were dosed to rodents fed a high-fat diet and their effect on body weight gain was evaluated.

Results

Both SD-MMT and SD-LAP particles adsorbed significant quantities of medium chain triglycerides and lipolytic products from solution during in vitro lipolysis. At a concentration of 50% w/w relative to lipid content, SD-MMT and SD-LAP particles adsorbed 42% and 94% of all lipid species, respectively. SD-MMT and SD-LAP particles also reduced the extent of rodent weight gain relative to the negative control treatment group and performed similarly to orlistat via an alternate mechanism of action.

Conclusions

Spray dried smectite clay particles (SD-MMT and SD-LAP) with significant adsorptive capacities for dietary lipids and digestion products were successfully fabricated. These particles may be developed as novel anti-obesity treatments with fewer adverse effects than currently marketed treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

1H NMR:

Proton nuclear magnetic resonance

AUC:

Area under the curve

CEC:

Cation exchange capacity

D(v,0.5):

Cumulative undersized volume fraction equal to 50%

DG:

Diglyceride

FA:

Fatty acid

H max :

Maximum extent of lipid hydrolysis

MCT:

Medium chain triglyceride

MG:

Monoglyceride

PBS:

Phosphate buffered saline

SD-LAP:

Spray dried laponite

SD-MMT:

Spray dried montmorillonite

SEM:

Scanning electron microscopy

SSA:

Specific surface area

TG:

Triglyceride

References

  1. Srivastava G, Apovian CM. Current pharmacotherapy for obesity. Nat Rev Endocrinol. 2017;14:12–24.

    Article  PubMed  Google Scholar 

  2. Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world — a growing challenge. N Engl J Med. 2007;356(3):213–5.

    Article  CAS  PubMed  Google Scholar 

  3. Withrow D, Alter DA. The economic burden of obesity worldwide: a systematic review of the direct costs of obesity. Obes Rev. 2011;12(2):131–41.

    Article  CAS  PubMed  Google Scholar 

  4. Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, et al. 2013 AHA/ACC/TOS guideline for the Management of Overweight and Obesity in adults: a report of the American College of Cardiology/American Heart Association task force on practice guidelines and the Obesity Society. J Am Coll Cardiol. 2014;63(25, part B):2985-3023.

  5. Onakpoya IJ, Heneghan CJ, Aronson JK. Post-marketing withdrawal of anti-obesity medicinal products because of adverse drug reactions: a systematic review. BMC Med. 2016;14(1):191.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Drewnowski A, Specter SE. Poverty and obesity: the role of energy density and energy costs. Am J Clin Nutr. 2004;79(1):6–16.

    Article  CAS  PubMed  Google Scholar 

  7. Bray GA, Popkin BM. Dietary fat intake does affect obesity! Am J Clin Nutr. 1998;68(6):1157–73.

    Article  CAS  PubMed  Google Scholar 

  8. Hill JO, Hauptman J, Anderson JW, Fujioka K, O'Neil PM, Smith DK, et al. Orlistat, a lipase inhibitor, for weight maintenance after conventional dieting: a 1-y study. Am J Clin Nutr. 1999;69(6):1108–16.

    Article  CAS  PubMed  Google Scholar 

  9. Yamamoto H, Takemoto K, Tamura I, Shin-oka N, Nakano T, Nishida M, et al. Contribution of inorganic and organic components to sorption of neutral and ionizable pharmaceuticals by sediment/soil. Environ Sci Pollut Res. 2018;25(8):7250–61.

    Article  CAS  Google Scholar 

  10. Aguzzi C, Cerezo P, Viseras C, Caramella C. Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci. 2007;36(1–3):22–36.

    Article  CAS  Google Scholar 

  11. Carmo AM, Hundal LS, Thompson ML. Sorption of hydrophobic organic compounds by soil materials: application of unit equivalent Freundlich coefficients. Environ Sci Technol. 2000;34(20):4363–9.

    Article  CAS  Google Scholar 

  12. Hundal LS, Thompson ML, Laird DA, Carmo AM. Sorption of Phenanthrene by reference Smectites. Environ Sci Technol. 2001;35(17):3456–61.

    Article  CAS  PubMed  Google Scholar 

  13. Xu P, Dai S, Wang J, Zhang J, Liu J, Wang F, et al. Preventive obesity agent montmorillonite adsorbs dietary lipids and enhances lipid excretion from the digestive tract. Sci Rep. 2016;6:19659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gershkovich P, Darlington J, Sivak O, Constantinides PP, Wasan KM. Inhibition of intestinal absorption of cholesterol by surface-modified nanostructured Aluminosilicate compounds. J Pharm Sci. 2009;98(7):2390–400.

    Article  CAS  PubMed  Google Scholar 

  15. Dening TJ, Joyce P, Rao S, Thomas N, Prestidge CA. Nanostructured montmorillonite clay for controlling the lipase-mediated digestion of medium chain triglycerides. ACS Appl Mater Interfaces. 2016;8(48):32732–42.

    Article  CAS  PubMed  Google Scholar 

  16. Dening TJ, Rao S, Thomas N, Prestidge CA. Montmorillonite-lipid hybrid carriers for ionizable and neutral poorly water-soluble drugs: formulation, characterization and in vitro lipolysis studies. Int J Pharm. 2017;526(1–2):95–105.

    Article  CAS  PubMed  Google Scholar 

  17. Dening TJ, Joyce P, Webber JL, Beattie DA, Prestidge CA. Inorganic surface chemistry and nanostructure controls lipolytic product speciation and partitioning during the digestion of inorganic-lipid hybrid particles. J Colloid Interface Sci. 2018;532:666–79.

    Article  CAS  PubMed  Google Scholar 

  18. Sek L, Porter CJH, Kaukonen AM, Charman WN. Evaluation of the in-vitro digestion profiles of long and medium chain glycerides and the phase behaviour of their lipolytic products. J Pharm Pharmacol. 2002;54(1):29–41.

    Article  CAS  PubMed  Google Scholar 

  19. Joyce P, Barnes T, Boyd BJ, Prestidge CA. Porous nanostructure controls kinetics, disposition and self-assembly structure of lipid digestion products. RSC Adv. 2016;6:78385–95.

    Article  CAS  Google Scholar 

  20. Huang L, Chen J, Cao P, Pan H, Ding C, Xiao T, et al. Anti-obese effect of glucosamine and chitosan oligosaccharide in high-fat diet-induced obese rats. Marine Drugs. 2015;13(5):2732–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schoonheydt RA, Johnston CT. Chapter 5 - Surface and Interface Chemistry of Clay Minerals. In: Faïza B, Gerhard L, editors. Developments in Clay Science. Volume 5: Elsevier; 2013. p. 139–172.

    Google Scholar 

  22. Thompson DW, Butterworth JT. The nature of laponite and its aqueous dispersions. J Colloid Interface Sci. 1992;151(1):236–43.

    Article  CAS  Google Scholar 

  23. Pecini EM, Avena MJ. Measuring the isoelectric point of the edges of clay mineral particles: the case of montmorillonite. Langmuir. 2013;29(48):14926–34.

    Article  CAS  PubMed  Google Scholar 

  24. Jatav S, Joshi YM. Chemical stability of Laponite in aqueous media. Appl Clay Sci. 2014;97–98:72–7.

    Article  Google Scholar 

  25. Ganley WJ, van Duijneveldt JS. Controlling clusters of colloidal platelets: effects of edge and face surface chemistries on the behavior of montmorillonite suspensions. Langmuir. 2015;31(15):4377–85.

    Article  CAS  PubMed  Google Scholar 

  26. Tawari SL, Koch DL, Cohen C. Electrical double-layer effects on the Brownian diffusivity and aggregation rate of Laponite clay particles. J Colloid Interface Sci. 2001;240(1):54–66.

    Article  CAS  PubMed  Google Scholar 

  27. Shahin A, Joshi YM. Irreversible aging dynamics and generic phase behavior of aqueous suspensions of Laponite. Langmuir. 2010;26(6):4219–25.

    Article  CAS  PubMed  Google Scholar 

  28. Delgado A, González-Caballero F, Bruque JM. On the zeta potential and surface charge density of montmorillonite in aqueous electrolyte solutions. J Colloid Interface Sci. 1986;113(1):203–11.

    Article  CAS  Google Scholar 

  29. Tucci SA, Boyland EJ, Halford JCG. The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutic agents. Diabetes Metab Syndr Obes. 2010;3:125–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Whitby CP, Fornasiero D, Ralston J. Effect of oil soluble surfactant in emulsions stabilised by clay particles. J Colloid Interface Sci. 2008;323(2):410–9.

    Article  CAS  PubMed  Google Scholar 

  31. Ganley WJ, van Duijneveldt JS. Controlling the rheology of montmorillonite stabilized oil-in-water emulsions. Langmuir. 2017;33(7):1679–86.

    Article  CAS  PubMed  Google Scholar 

  32. Saunders JM, Goodwin JW, Richardson RM, Vincent B. A small-angle X-ray scattering study of the structure of aqueous Laponite dispersions. J Phys Chem B. 1999;103(43):9211–8.

    Article  CAS  Google Scholar 

  33. Abend S, Bonnke N, Gutschner U, Lagaly G. Stabilization of emulsions by Heterocoagulation of clay minerals and layered double hydroxides. Colloid Polym Sci. 1998;276(8):730–7.

    Article  CAS  Google Scholar 

  34. Ishiguro M, Koopal LK. Surfactant adsorption to soil components and soils. Adv Colloid Interf Sci. 2016;231:59–102.

    Article  CAS  Google Scholar 

  35. Jaynes W, Boyd S. Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water. Clay Clay Miner. 1991;39(4):428–36.

    Article  CAS  Google Scholar 

  36. van Olphen H. Internal mutual flocculation in clay suspensions. J Colloid Sci. 1964;19(4):313–22.

    Article  Google Scholar 

  37. Tan A, Martin A, Nguyen T-H, Boyd BJ, Prestidge CA. Hybrid nanomaterials that mimic the food effect: controlling enzymatic digestion for enhanced Oral drug absorption. Angew Chem. 2012;124(22):5571–5.

    Article  Google Scholar 

  38. González R. Medina FSd, Martínez-Augustin O, Nieto a, Gálvez J, Risco S, et al. anti-inflammatory effect of diosmectite in hapten-induced colitis in the rat. Br J Pharmacol. 2004;141(6):951–60.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Khediri F, Mrad AI, Azzouz M, Doughi H, Najjar T, Mathiex-Fortunet H, et al. Efficacy of diosmectite (smecta) in the treatment of acute watery diarrhoea in adults: a multicentre, randomized, double-blind, placebo-controlled, parallel group study. Gastroenterol Research Pract. 2011;2011:783196.

    Article  Google Scholar 

  40. Roche. Xenical Product Information 2015 [Available from: http://www.guildlink.com.au/gc/ws/ro/pi.cfm?product=ropxencp11214.

  41. Castela-Papin N, Cai S, Vatier J, Keller F, Souleau CH, Farinotti R. Drug interactions with diosmectite: a study using the artificial stomach–duodenum model. Int J Pharm. 1999;182(1):111–9.

    Article  CAS  PubMed  Google Scholar 

  42. Dening TJ, Thomas N, Rao S, van Looveren C, Cuyckens F, Holm R, et al. Montmorillonite and Laponite clay materials for the solidification of lipid-based formulations for the basic drug Blonanserin: in vitro and in vivo investigations. Mol Pharm. 2018;15:4148–60.

    Article  CAS  PubMed  Google Scholar 

  43. McGinity JW, Lach JL. In vitro adsorption of various pharmaceuticals to montmorillonite. J Pharm Sci. 1976;65(6):896–902.

    Article  CAS  PubMed  Google Scholar 

  44. Hunninghake DB, Hibbard DM. Influence of time intervals for cholestyramine dosing on the absorption of hydrochlorothiazide. Clin Pharmacol Ther. 1986;39(3):329–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

The Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology (ARC CE140100036) is gratefully acknowledged for research funding and support. The Australian Government Research Training Program is acknowledged for the PhD Scholarship of Tahnee J. Dening; the ÅForsk Foundation (16–463) and Wenner-Gren Foundation are acknowledged for the postdoctoral fellowship support and funding of Paul Joyce and Hanna Gustafsson; and, the Academy of Finland (#287625) is acknowledged for funding for the postdoctoral fellowship of Miia Kovalainen. This work was performed (in part) at the South Australian node of the Australian National Fabrication Facility under the National Collaborative Research Infrastructure Strategy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive A. Prestidge.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dening, T.J., Joyce, P., Kovalainen, M. et al. Spray Dried Smectite Clay Particles as a Novel Treatment against Obesity. Pharm Res 36, 21 (2019). https://doi.org/10.1007/s11095-018-2552-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2552-9

Key Words

Navigation