Skip to main content

Advertisement

Log in

Molecular mechanisms of zinc uptake and translocation in rice

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Zinc (Zn) is an essential micronutrient for plants and humans, involved in protein, nucleic acid, carbohydrate, and lipid metabolism. In addition, Zn is critical to the control of gene transcription and the coordination of other biological processes.

Scope

Zn deficiency is one of the most serious problems in plant and human nutrition. Like other plants, rice plant acquires Zn from soil and transports it to vegetative tissue as well as seed through a number of transporters which are strictly regulated. Several members of the Zn-regulated transporters and iron (Fe)-regulated transporter-like protein (ZIP) gene family have been characterized and shown to be involved in metal uptake and transport in rice. The most characterized members of this family in rice are OsZIP1, OsZIP3, OsZIP4, OsZIP5, and OsZIP8, however little is known about the expression of these genes through different growth stages of rice.

Conclusion

Here we discuss the molecular mechanisms of Zn transport in rice as an essential advance for understanding and manipulating the Zn absorption and translocation in rice. OsZIP1 and OsZIP3 seems important for Zn uptake from soil, OsZIP4, OsZIP5 and OsZIP8 for root to shoot translocation, while OsZIP4 and OsZIP8 seems particularly important for Zn transport to seed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Zn::

Zinc

ZIP::

Zn-regulated transporters and Iron (Fe) regulated transporter like protein

YSL:

yellow stripe 1 like

NA:

nicotianamine

DMA:

2′-Deoxymugineic acid

References

  • Aoyama T, Kobayashi T, Takahashi M, Nagasaka S, Usuda K, Kakei Y, Ishimaru Y, Nakanishi H, Mori S, Nishizawa NK (2009) OsYSL18 is a rice iron(III)–deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Mol Biol 70:681–692

    Article  PubMed  CAS  Google Scholar 

  • Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 281:32395–32402

    Article  PubMed  CAS  Google Scholar 

  • Bashir K, Ishimaru Y, Nishizawa NK (2010) Iron uptake and loading into rice grains. Rice 3:122–130

    Article  Google Scholar 

  • Bashir K, Nishizawa NK (2006) Deoxymugineic acid synthase: a gene important for Fe-acquisition and homeostasis. Plant Signal Behav 1:292

    Article  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  PubMed  CAS  Google Scholar 

  • Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) Cloning an iron-regulated metal transporter from rice. J Exp Bot 53:1677–1682

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Cakmak I, Gülüt KY, Marschner H, Graham RD (1994) Efect of zinc and iron deficiency on phytosiderophore release in wheat genotypes differing in zinc efficiency. J Plant Nutr 17:1–17

    Article  CAS  Google Scholar 

  • Cakmak I, Kalaycı M, Ekiz H, Braun HJ, Kılınç Y, Yılmaz A (1999) Zinc deficiency as a practical problem in plant and human nutrition in Turkey: a NATO-science for stability project. Field Crop Res 60:175–188

    Article  Google Scholar 

  • Cakmak I, Kalayci M, Kaya Y, Torun AA, Aydin N, Wang Y, Arisoy Z, Erdem H, Yazici A, Gokmen O, Ozturk L, Horst WJ (2010) Biofortification and localization of zinc in wheat grain. J Agric Food Chem 58:9092–9102

    Article  CAS  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    Article  PubMed  CAS  Google Scholar 

  • Conte SS, Walker EL (2011) Transporters contributing to iron trafficking in plants. Mol Plant 4:464–476

    Article  PubMed  CAS  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat J-F, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349

    Article  PubMed  CAS  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci 93:5624–5628

    Article  PubMed  CAS  Google Scholar 

  • Godbold DL, Horst WJ, Marschner H, Collins JC, Thurman DA (1983) Root growth and Zn uptake by two ecotypes of Deschampsia caespitosa as affected by high Zn concentrations. Zeitschrift für Pflanzenphysiologie 112:315–324

    CAS  Google Scholar 

  • Graham R, Senadhira D, Beebe S, Iglesias C, Monasterio I (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crop Res 60:57–80

    Article  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochimica et Biophysica Acta (BBA)—Biomembranes 1465:190–198

    Article  CAS  Google Scholar 

  • Herbik A, Koch G, Mock HP, Dushkov D, Czihal A, Thielmann J, Stephan UW (1999) Isolation, characterization and cDNA cloning of nicotianamine synthase from barley. Eur J Biochem 265:231–239

    Article  PubMed  CAS  Google Scholar 

  • Higuchi K, Kanazawa K, Nishizawa NK, Chino M, Mori S (1994) Purification and characterization of nicotianamine synthase from Fe-deficient barley roots. Plant Soil 165:173–179

    Article  CAS  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–480

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Takano M, Terao T (2002) Cell wall invertase in developing rice caryopsis: molecular cloning of oscin1 and analysis of its expression in relation to its role in grain filling. Plant Cell Physiol 43:452–459

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36:366–381

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated Iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3470–3479

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Takahashi M, Kobayashi T, Suzuki M, Nakanishi H, Mori S, Nishizawa NK (2008) Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol Biol 66:193–203

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Bashir K, Nishizawa NK (2011) Zn uptake and translocation in rice plants. Rice 4:21–27

    Article  Google Scholar 

  • Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa NK (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379–390

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot 58:2909–2915

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346

    Article  PubMed  CAS  Google Scholar 

  • Johnson AAT, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS One 6:e24476

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa K, Mihashi S, Nishizawa NK, Chino M, Mori S (1993) Biosynthetic pathway of phytosiderophores in iron-deficient graminaceous plants: a new assay system for the detection of nicotianamine amino-transferase activity. Plant Soil 155–156:103–105

    Article  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424

    Article  PubMed  CAS  Google Scholar 

  • Korshunova YO, Eide D, Gregg Clark W, Lou Guerinot M, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Jeon US, Lee SJ, Kim Y-K, Persson DP, Husted S, Schjørring JK, Kakei Y, Masuda H, Nishizawa NK, An G (2009) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci 106:22014–22019

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Jeong H, Kim S, Lee J, Guerinot M, An G (2010a) OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol 73:507–517

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim S, Lee J, Guerinot M, An G (2010b) Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol Cells 29:551–558

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Persson DP, Hansen TH, Husted S, Schjoerring JK, Kim Y-S, Jeon US, Kim Y-K, Kakei Y, Masuda H, Nishizawa NK, An G (2011) Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnol J 9:865–873

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Masuda H, Suzuki M, Morikawa K, Kobayashi T, Nakanishi H, Takahashi M, Saigusa M, Mori S, Nishizawa NK (2008) Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice 1:100–108

    Article  Google Scholar 

  • Masuda H, Usuda K, Kobayashi T, Ishimaru Y, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Mori S, Nishizawa NK (2009) Overexpression of the barley nicotianamine synthase gene HvNAS1 Increases Iron and Zinc concentrations in rice grains. Rice 2:155–166

    Article  Google Scholar 

  • Mori S (1999) Iron acquisition by plants. Curr Opin Plant Biol 2:250–253

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Nishizawa NK (1987) Methionine as a dominant precursor of phytosiderophores in graminaceae plants. Plant Cell Physiol 28:1081–1092

    CAS  Google Scholar 

  • Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T (2006) A specific transporter for iron(III)—phytosiderophore in barley roots. Plant J 46:563–572

    Article  PubMed  CAS  Google Scholar 

  • Nagasaka S, Takahashi M, Nakanishi-Itai R, Bashir K, Nakanishi H, Mori S, Nishizawa NK (2009) Time course analysis of gene expression over 24 hours in Fe-deficient barley roots. Plant Mol Biol 69:621–631

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi H, Yamaguchi H, Sasakuma T, Nishizawa NK, Mori S (2000) Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol Biol 44:199–207

    Article  PubMed  CAS  Google Scholar 

  • Negishi T, Nakanishi H, Yazaki J, Kishimoto N, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kikuchi S, Mori S, Nishizawa NK (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J 30:83–94

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama R, Kato M, Nagata S, Yanagisawa S, Yoneyama T (2012) Identification of Zn-nicotianamine and Fe-2′-deoxymugineic acid in the phloem saps from rice plants (Oryza sativa L.). Plant Cell Physiol 53:381–390

    Article  PubMed  CAS  Google Scholar 

  • Nozoye T, Inoue H, Takahashi M, Ishimaru Y, Nakanishi H, Mori S, Nishizawa NK (2007) The expression of iron homeostasis-related genes during rice germination. Plant Mol Biol 64:35–47

    Article  PubMed  CAS  Google Scholar 

  • Nozoye T, Itai R, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) Diurnal changes in the expression of genes that participate in phytosiderophore synthesis in rice. Soil Sci Plant Nutr 50:1125–1131

    Article  CAS  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286:5446–5454

    Article  PubMed  CAS  Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340

    Article  PubMed  CAS  Google Scholar 

  • Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473

    Article  PubMed  CAS  Google Scholar 

  • Ptashnyk M, Roose T, Jones DL, Kirk GJD (2011) Enhanced zinc uptake by rice through phytosiderophore secretion: a modelling study. Plant Cell Environ 34:2038–2046

    Article  PubMed  CAS  Google Scholar 

  • Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134

    Article  PubMed  CAS  Google Scholar 

  • Rhodes D, Klug A (1993) Zinc fingers. Sci Am 268:56–65

    Article  PubMed  CAS  Google Scholar 

  • Roberts LA, Pierson AJ, Panaviene Z, Walker EL (2004) Yellow stripe1. expanded roles for the maize iron-phytosiderophore transporter. Plant Physiol 135:112–120

    Article  PubMed  CAS  Google Scholar 

  • Ruano A, Poschenrieder C, Barceló J (1988) Growth and biomass partitioning in zinc-toxic bush beans. J Plant Nutr 11:577–588

    Article  CAS  Google Scholar 

  • Ruel M, Bouis H (1998) Plant breeding: a long-term strategy for the control of zinc deficiency in vulnerable populations. Am J Clin Nutr 68:488S–494S

    PubMed  CAS  Google Scholar 

  • Sato Y, Antonio B, Namiki N, Motoyama R, Sugimoto K, Takehisa H, Minami H, Kamatsuki K, Kusaba M, Hirochika H, Nagamura Y (2011a) Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonica rice. BMC Plant Biol 11:10

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Antonio BA, Namiki N, Takehisa H, Minami H, Kamatsuki K, Sugimoto K, Shimizu Y, Hirochika H, Nagamura Y (2011b) RiceXPro: a platform for monitoring gene expression in japonica rice grown under natural field conditions. Nucleic Acids Res 39:D1141–D1148

    Article  PubMed  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wirén N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated Metals. J Biol Chem 279:9091–9096

    Article  PubMed  CAS  Google Scholar 

  • Scofield GN, Aoki N, Hirose T, Takano M, Jenkins CLD, Furbank RT (2007) The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants. J Exp Bot 58:483–495

    Article  PubMed  CAS  Google Scholar 

  • Shojima S, Nishizawa NK, Fushiya S, Nozoe S, Irifune T, Mori S (1990) Biosynthesis of phytosiderophores: in vitro biosynthesis of 2′-deoxymugineic acid from L-methionine and nicotianamine. Plant Physiol 93:1497–1503

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Bashir K, Inoue H, Takahashi M, Nakanishi H, Nishizawa NK (2012) Accumulation of starch in Zn-deficient rice. Rice in Press

  • Suzuki M, Morikawa KC, Nakanishi H, Takahashi M, Saigusa M, Mori S, Nishizawa NK (2008a) Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil. Soil Sci Plant Nutr 54:77–85

    Article  CAS  Google Scholar 

  • Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi S, Nakanishi H, Mori S, Nishizawa NK (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Tsukamoto T, Inoue H, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2008b) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol 66:609–617

    Article  PubMed  CAS  Google Scholar 

  • Takagi S-i (1976) Naturally occurring iron-chelating compounds in oat-and rice-root washings: I. Activity measurement and preliminary characterization. Soil Sci Plant Nutr 22:423–433

    Article  CAS  Google Scholar 

  • Takagi S, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr 7:469–477

    Article  CAS  Google Scholar 

  • Takahashi M, Nozoye T, Kitajima N, Fukuda N, Hokura A, Terada Y, Nakai I, Ishimaru Y, Kobayashi T, Nakanishi H, Nishizawa NK (2009) In vivo analysis of metal distribution and expression of metal transporters in rice seed during germination process by microarray and X-ray Fluorescence Imaging of Fe, Zn, Mn, and Cu. Plant Soil 325:39–51

    Article  CAS  Google Scholar 

  • Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa NK, Mori S (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiol 121:947–956

    Article  PubMed  CAS  Google Scholar 

  • Usuda K, Wada Y, Ishimaru Y, Kobayashi T, Takahashi M, Nakanishi H, Nagato Y, Mori S, Nishizawa NK (2009) Genetically engineered rice containing larger amounts of nicotianamine to enhance the antihypertensive effect. Plant Biotechnol J 7:87–95

    Article  PubMed  CAS  Google Scholar 

  • Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    Article  PubMed  CAS  Google Scholar 

  • Vert G, Briat J-F, Curie C (2001) Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J 26:181–189

    Article  PubMed  CAS  Google Scholar 

  • Walter A, Römheld V, Marschner H, Mori S (1994) Is the release of phytosiderophores in zinc-deficient wheat plants a response to impaired iron utilization? Physiol Plant 92:493–500

    Article  CAS  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  PubMed  CAS  Google Scholar 

  • Welch RM, Shuman L (1995) Micronutrient nutrition of plants. Crit Rev Plant Sci 14:49–82

    CAS  Google Scholar 

  • Widodo BMR, Rose T, Frei M, Pariasca-Tanaka J, Yoshihashi T, Thomson M, Hammond JP, Aprile A, Close TJ, Ismail AM, Wissuwa M (2010) Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity. New Phytol 186:400–414

    Article  PubMed  Google Scholar 

  • Wissuwa M, Ismail A, Graham R (2008) Rice grain zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization. Plant Soil 306:37–48

    Article  CAS  Google Scholar 

  • Wissuwa M, Ismail AM, Yanagihara S (2006) Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiol 142:731–741

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (2002) World Health Report 2002. (http://www.who.int/whr/2002/)

  • Wu FY, Huang WJ, Sinclair RB, Powers L (1992) The structure of the zinc sites of Escherichia coli DNA-dependent RNA polymerase. J Biol Chem 267:25560–25567

    PubMed  CAS  Google Scholar 

  • Wu FYH, Wu CW (1987) Zinc in DNA replication and transcription. Annu Rev Nutr 7:251–272

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Huang J, Jiang Y, Zhang H-S (2009) Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Mol Biol Rep 36:281–287

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Ye ZQ, Shi CH, Zhu ML, Graham RD (1998) Genotypic differences in concentrations of iron, manganese, copper, and zinc in polished rice grains. J Plant Nutr 21:1453–1462

    Article  CAS  Google Scholar 

  • Zhang F, Römheld V, Marschner H (1989) Effect of zinc deficiency in wheat on the release of zinc and iron mobilizing root exudates. Zeitschrift für Pflanzenernährung und Bodenkunde 152:205–210

    Article  CAS  Google Scholar 

  • Zhang Y-Q, Sun Y-X, Ye Y-L, Karim MR, Xue Y-F, Yan P, Meng Q-F, Cui Z-L, Cakmak I, Zhang F-S, Zou C-Q (2012) Zinc biofortification of wheat through fertilizer applications in different locations of China. Field Crop Res 125:1–7

    Article  Google Scholar 

  • Zheng L, Cheng Z, Ai C, Jiang X, Bei X, Zheng Y, Glahn RP, Welch RM, Miller DD, Lei XG, Shou H (2010) Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PLoS One 5:e10190

    Article  PubMed  Google Scholar 

  • Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P (2007) Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci 12:548–555

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Green Technology Project IP-5003). We thank Dr. Tomoko Nozoye and Dr. Motofumi Suzuki for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoko K. Nishizawa.

Additional information

Responsible Editor: Ismail Cakmak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashir, K., Ishimaru, Y. & Nishizawa, N.K. Molecular mechanisms of zinc uptake and translocation in rice. Plant Soil 361, 189–201 (2012). https://doi.org/10.1007/s11104-012-1240-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1240-5

Keywords

Navigation