Skip to main content
Log in

Current status and challenges in developing nickel phytomining: an agronomic perspective

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Nickel (Ni) phytomining operations cultivate hyperaccumulator plants (‘metal crops’) on Ni-rich (ultramafic) soils, followed by harvesting and incineration of the biomass to produce a high-grade ‘bio-ore’ from which Ni metal or pure Ni salts are recovered.

Scope

This review examines the current status, progress and challenges in the development of Ni phytomining agronomy since the first field trial over two decades ago. To date, the agronomy of less than 10 species has been tested, while most research focussed on Alyssum murale and A. corsicum. Nickel phytomining trials have so far been undertaken in Albania, Canada, France, Italy, New Zealand, Spain and USA using ultramafic or Ni-contaminated soils with 0.05–1 % total Ni.

Conclusions

N, P and K fertilisation significantly increases the biomass of Ni hyperaccumulator plants, and causes negligible dilution in shoot Ni concentration. Organic matter additions have pronounced positive effects on the biomass of Ni hyperaccumulator plants, but may reduce shoot Ni concentration. Soil pH adjustments, S additions, N fertilisation, and bacterial inoculation generally increase Ni phytoavailability, and consequently, Ni yield in ‘metal crops’. Calcium soil amendments are necessary because substantial amounts of Ca are removed through the harvesting of ‘bio-ore’. Organic amendments generally improve the physical properties of ultramafic soil, and soil moisture has a pronounced positive effect on Ni yield. Repeated ‘metal crop’ harvesting depletes soil phytoavailable Ni, but also promotes transfer of non-labile soil Ni to phytoavailable forms. Traditional chemical soil extractants used to estimate phytoavailability of trace elements are of limited use to predict Ni phytoavailability to ‘metal crop’ species and hence Ni uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig 3

Similar content being viewed by others

References

  • Abou-Shanab RAI, Angle JS, Delorme TA, Chaney RL, Van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    Article  CAS  Google Scholar 

  • Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  CAS  Google Scholar 

  • Alexander EB (2004) Serpentine soil redness, differences among peridotite and serpentinite materials, Klamath Mountains, California. Int Geol Rev 46:754–764

    Article  Google Scholar 

  • Álvarez-López V, Prieto-Fernández Á, Cabello-Conejo MI, Kidd PS (2016) Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants. Sci Tot Environ 548–549:370–379

    Article  Google Scholar 

  • Anderson CWN, Brooks RR, Chiarucci A, LaCoste CJ, Leblanc M, Robinson BH, Simcock R, Stewart RB (1999) Phytomining for nickel, thallium and gold. J Geochem Explor 67:407–415

    Article  CAS  Google Scholar 

  • Angle JS, Baker AJM, Whiting SN, Chaney RL (2003) Soil moisture effects on uptake of metals by Thlaspi, Alyssum, and Berkheya. Plant Soil 256:325–332

    Article  CAS  Google Scholar 

  • Antić-Mladenović S, Rinklebe J, Frohne T, Stärk H-J, Wennrich R, Tomić Z, Ličina V (2011) Impact of controlled redox conditions on nickel in a serpentine soil. J Soils Sediments 11:406–415

    Article  Google Scholar 

  • Baillie IC, Evangelista PM, Inciong NB (2000) Differentiation of upland soils on the Palawan ophiolitic complex, Philippines. Catena 39:283–299

    Article  CAS  Google Scholar 

  • Baker AJM (1999) Revegetation of asbestos mine wastes. Princeton Architectural Press, New York

    Google Scholar 

  • Baker AJM, Brooks R (1989) Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, Walker PL (1989) Physiological responses of plants to heavy metals and the quantification of tolerance and toxicity. Chem Spec Bioavailab 1:7–17

    CAS  Google Scholar 

  • Baker AJM, Proctor J, Van Balgooy M, Reeves R (1992) Hyperaccumulation of nickel by the flora of the ultramafics of Palawan, Republic of the Philippines. Intercept Ltd, Andover

    Google Scholar 

  • Bani A (2007) In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 293:79–89

    Article  CAS  Google Scholar 

  • Bani A, Imeri A, Echevarria G, Pavlova D, Reeves RD, Morel JL, Sulçe S (2013) Nickel hyperaccumulation in the serpentine flora of Albania. Fresen Environ Bull 22:1792–1801

    CAS  Google Scholar 

  • Bani A, Echevarria G, Montargès-Pelletier E, Gjoka F, Sulçe S, Morel JL (2014) Pedogenesis and nickel biogeochemistry in a typical Albanian ultramafic toposequence. Environ Monit Assess 186:4431–4442

    Article  CAS  PubMed  Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel JL (2015a) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediat 17:117–127

    Article  CAS  Google Scholar 

  • Bani A, Echevarria G, Zhang X, Benizri E, Laubie B, Morel JL, Simonnot M-O (2015b) The effect of plant density in nickel-phytomining field experiments with Alyssum murale in Albania. Aust J Bot 63:72–77

    CAS  Google Scholar 

  • Becquer T, Pétard J, Duwig C, Bourdon E, Moreau R, Herbillon AJ (2001) Mineralogical, chemical and charge properties of Geric Ferralsols from New Caledonia. Geoderma 103:291–306

    Article  CAS  Google Scholar 

  • Bennett F, Tyler E, Brooks R, Gregg P, Stewart R (1998) Fertilisation of hyperaccumulators to enhance their potential for phytoremediation and phytomining. CAB International, Wallingford

    Google Scholar 

  • Booth EJ, Batchelor SE, Walker KC (1995) The effect of foliar-applied sulfur on individual glucosinolates in oilseed rape seed. Z Pflanz Bodenkunde 158:87–88

    Article  CAS  Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JS, Maugel TK, Erbe EF, Murphy CA (2004a) Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes. Environ Sci Technol 38:5797–5802

    Article  CAS  PubMed  Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JA, Erbe EF, Maugel TK (2004b) Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale. Plant Soil 265:225–242

    Article  CAS  Google Scholar 

  • Broadhurst CL, Tappero RV, Maugel TK, Erbe EF, Sparks DL, Chaney RL (2009) Interaction of nickel and manganese in accumulation and localization in leaves of the Ni hyperaccumulators Alyssum murale and Alyssum corsicum. Plant Soil 314:35–48

    Article  Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, Oregon, USA

    Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration, and phytomining. CAB International, Wallingford

    Google Scholar 

  • Brooks RR, Wither ED (1977) Nickel accumulation by Rinorea bengalensis (Wall.) O.K. J Geochem Explor 7:295–300

    Article  CAS  Google Scholar 

  • Brooks R, Chiarucci A, Jaffré T (1998) Revegetation and stabilisation of mine dumps and other degraded terrain. CAB International, Wallingford

    Google Scholar 

  • Cabello-Conejo MI, Prieto-Fernández Á, Kidd PS (2014) Exogenous treatments with phytohormones can improve growth and nickel yield of hyperaccumulating plants. Sci Total Environ 494–495:1–8

    Article  PubMed  Google Scholar 

  • Cassina L, Tassi E, Morelli E, Giorgetti L, Remorini D, Chaney RL, Barbafieri M (2011) Exogenous cytokinin treatments of an ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: implications for phytoextraction. Int J Phytoremediat 13:90–101

    Article  Google Scholar 

  • Centofanti T, Siebecker MG, Chaney RL, Davis AP, Sparks DL (2012) Hyperaccumulation of nickel by Alyssum corsicum is related to solubility of Ni mineral species. Plant Soil 359:71–83

    Article  CAS  Google Scholar 

  • Chaney RL, Angle JS, Baker AJM, Li YM (1998) Method for phytomining of nickel, cobalt and other metals from soil. US Patent 5:711–784, 27 January 1998

    Google Scholar 

  • Chaney RL, Li YM, Brown SL, Homer FA, Malik M, Angle JS, Baker AJM, Reeves RD, Chin M (2000) Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, FL, pp 129–158

    Google Scholar 

  • Chaney RL, Angle JS, Li YM et al. (2007) Recovering metals from soil. US Patent 7268273 B2, 11 September 2007

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007b) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1433

    Article  CAS  PubMed  Google Scholar 

  • Chaney RL, Chen KY, Li YM, Angle JS, Baker AJM (2008) Effects of calcium on nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant Soil 311:131–140

    Article  CAS  Google Scholar 

  • Chardot V, Massoura ST, Echevarria G, Reeves RD, Morel JL (2005) Phytoextraction potential of the nickel hyperaccumulators Leptoplax emarginata and Bornmuellera tymphaea. Int J Phytoremediat 7:323–335

    Article  CAS  Google Scholar 

  • Chardot V, Echevarria G, Gury M, Massoura S, Morel JL (2007) Nickel bioavailability in an ultramafic toposequence in the Vosges Mountains (France). Plant Soil 293:7–21

    Article  CAS  Google Scholar 

  • Cheng C-H, Jien S-H, Iizuka Y, Tsai H, Chang Y-H, Hseu Z-Y (2011) Pedogenic chromium and nickel partitioning in serpentine soils along a toposequence. Soil Sci Soc Am J 75:659–668

    Article  CAS  Google Scholar 

  • Das SK, Sahoo RK, Muralidhar J, Nayak BK (1999) Mineralogy and geochemistry of profiles through lateritic nickel deposits at Kansa, Sukinda, Orissa. J Geol Soc India 53:649–668

    CAS  Google Scholar 

  • Deng THB, Coquet C, Tang YT, Sterckeman T, Echevarria G, Estrade N, Morel JL, Qiu RL (2014) Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants. Environ Sci Technol 48:11926–11933

    Article  CAS  PubMed  Google Scholar 

  • Durand A, Piutti S, Rue M et al. (2015) Improving nickel phytoextraction by co-cropping hyperaccumulator plants inoculated by plant growth promoting rhizobacteria. Plant Soil:1–14

  • Echevarria G, Morel JL, Fardeau JC, Leclerc-Cessac E (1998) Assessment of phytoavailability of nickel in soils. J Environ Qual 27:1064–1070

    Article  CAS  Google Scholar 

  • Echevarria G, Stamatia Tina M, Thibault S, Becquer T, Schwartz C, Morel JL (2006) Assessment and control of the bioavailability of nickel in soils. Environ Toxicol Chem 25:643–651

    Article  CAS  PubMed  Google Scholar 

  • Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11:163–167

    Article  CAS  Google Scholar 

  • Estrade N, Cloquet C, Echevarria G, Sterckeman T, Deng T, Tang Y, Morel J-L (2015) Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania). Earth Planet Sci Lett 423:24–35

    Article  CAS  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golightly J (1979) Nickeliferous laterites: a general description. In: International Laterite Symposium, New Orleans. Soc Mining Eng, Am Instit Mining, Metallurgical, Petroleum Eng 38–56

  • Hseu Z-Y (2006) Concentration and distribution of chromium and nickel fractions along a serpentinitic toposequence. Soil Sci 171:341–353

    Article  CAS  Google Scholar 

  • Hunt AJ (2014) Phytoextraction as a tool for green chemistry. Green Process Synthesis 3:3–22

    Article  CAS  Google Scholar 

  • Jenny H (1980) The soil resource: origin and behaviour

  • Jopony M, Tongkul F (2011) Heavy metal hyperaccumulating plants in Malaysia and its potential applications. In: Kuhn K (ed) New perspectives in sustainable management in different woods. Schriftenreihe der SRH Hochschule Heidelberg, Verlag Berlin GmbH. Logos Verlag Berlin GmbH, Verlag, pp 129–142

    Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  Google Scholar 

  • Kruckeberg AR (1985) California serpentines: Flora, vegetation, geology, soils, and management problems. vol 78. University of California Press, USA

    Google Scholar 

  • Kruckeberg AR (1991) Plant life of western North American ultramafics. Springer, Netherlands

    Google Scholar 

  • Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 33:2090–2102

    Article  CAS  PubMed  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  PubMed  Google Scholar 

  • Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker AJM, Reeves R, Nelkin J (2003a) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    Article  CAS  Google Scholar 

  • Li YM, Chaney RL, Brewer EP, Angle JS, Nelkin J (2003b) Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ Sci Technol 37:1463–1468

    Article  CAS  Google Scholar 

  • Massoura ST, Echevarria G, Leclerc-Cessac E, Morel JL (2004) Response of excluder, indicator, and hyperaccumulator plants to nickel availability in soils. Aust J Soil Res 42:933–938

    Article  CAS  Google Scholar 

  • Massoura ST, Echevarria G, Becquer T, Ghanbaja J, Leclerc-Cessac E, Morel J-L (2006) Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma 136:28–37

    Article  CAS  Google Scholar 

  • Morrey DR, Balkwill K, Balkwill MJ (1989) Studies on serpentine flora - preliminary analyses of soils and vegetation associated with serpentinite rock formations in the Southeastern Transvaal. S Afr J Bot 55:171–177

    Article  Google Scholar 

  • Na G, Salt DE (2011) Differential regulation of serine acetyltransferase is involved in nickel hyperaccumulation in Thlaspi goesingense. J Biol Chem 286:40423–40432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicks L, Chambers M (1995) Farming for metals. Min Environ Manag 3:15–18

    Google Scholar 

  • O’Dell RE, Claassen VP (2009) Serpentine revegetation: a review. Northeast Nat 16:253–271

    Article  Google Scholar 

  • Orłowska E, Przybyłowicz W, Orlowski D, Turnau K, Mesjasz-Przybyłowicz J (2011) The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Pollut 159:3730–3738

    Article  PubMed  Google Scholar 

  • Pollard AJ (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566

    Article  CAS  Google Scholar 

  • Proctor J, Nagy L (1992) Ultramafic rocks and their vegetation: an overview. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, pp 469–494

    Google Scholar 

  • Proctor J, Woodell SR (1975) The ecology of serpentine soils. Adv Ecol Res 9:255–366

    Article  Google Scholar 

  • Quantin C, Becquer T, Rouiller JH, Berthelin J (2001) Oxide weathering and trace metal release by bacterial reduction in a New Caledonia ferrasol. Biogeochemistry 53:323–340

    Article  CAS  Google Scholar 

  • Quantin C, Becquer T, Rouiller JH, Berthelin J (2002) Redistribution of metals in a New Caledonia Ferralsol after microbial weathering. Soil Sci Soc Am J 66:1797–1804

    Article  CAS  Google Scholar 

  • Raous S, Becquer T, Garnier J, Martins ED, Echevarria G, Sterckeman T (2010) Mobility of metals in nickel mine spoil materials. Appl Geochem 25:1746–1755

    Article  CAS  Google Scholar 

  • Raous S, Echevarria G, Sterckeman T, Hanna K, Thomas F, Martins ES, Becquer T (2013) Potentially toxic metals in ultramafic mining materials: identification of the main bearing and reactive phases. Geoderma 192:111–119

    Article  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  • Reeves RD, Brooks RR, Press JR (1980) Nickel accumulation by species of Peltaria Jacq. (Cruciferae). Taxon 29:629–633

    Article  Google Scholar 

  • Reeves RD, Brooks RR, Dudley TR (1983) Uptake of nickel by species of Alyssum, Bornmuellera, and other genera of Old World Tribus Alysseae. Taxon 32:184–192

    Article  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazaín R (1996) Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133:217–224

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, BerazaÍN R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot-London 83:29–38

    Article  CAS  Google Scholar 

  • Robinson BH, Brooks RR, Kirkman JH, Gregg PEH, Gremigni P (1996) Plant‐available elements in soils and their influence on the vegetation over ultramafic (“serpentine”) rocks in New Zealand. J Roy Soc New Zeal 26:457–468

    Article  Google Scholar 

  • Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997a) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126

    Article  CAS  Google Scholar 

  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V (1997b) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86

    Article  CAS  Google Scholar 

  • Robinson BH, Brooks RR, Clothier BE (1999a) Soil amendments affecting nickel and cobalt uptake by Berkheya coddii: potential use for phytomining and phytoremediation. Ann Bot-London 84:689–694

    Article  CAS  Google Scholar 

  • Robinson BH, Brooks RR, Gregg PEH, Kirkman JH (1999b) The nickel phytoextraction potential of some ultramafic soils as determined by sequential extraction. Geoderma 87:293–304

    Article  CAS  Google Scholar 

  • Robinson B, Fernández J-E, Madejón P, Marañón T, Murillo J, Green S, Clothier B (2003) Phytoextraction: an assessment of biogeochemical and economic viability. Plant Soil 249:117–125

    Article  CAS  Google Scholar 

  • Shallari S, Echevarria G, Schwartz C, Morel JL (2001) Availability of nickel in soils for the hyperaccumulator Alyssum murale Waldst. & Kit. S Afr J Sci 97:568–570

    CAS  Google Scholar 

  • Tappero R et al (2007) Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol 175:641–654

    Article  CAS  PubMed  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  • van der Ent A, Mulligan D (2015) Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. J Chem Ecol 41:396–408

    Article  PubMed  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013a) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  • van der Ent A, Baker AJM, van Balgooy MMJ, Tjoa A (2013b) Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. J Geochem Explor 128:72–79

    Article  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Chaney RL (2015a) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780

    Article  PubMed  Google Scholar 

  • van der Ent A, Erskine P, Sumail S (2015b) Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology 25:243–259

    Article  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  PubMed  Google Scholar 

  • Viets FG (1962) Micronutrient availability, chemistry and availability of micronutrients in soils. J Agr Food Chem 10:174–178

    Article  CAS  Google Scholar 

  • Vithanage M, Rajapaksha AU, Oze C, Rajakaruna N, Dissanayake CB (2014) Metal release from serpentine soils in Sri Lanka. Environ Monit Assess 186:3415–3429

    Article  CAS  PubMed  Google Scholar 

  • Vlamis J, Jenny H (1948) Calcium deficiency in serpentine soils as revealed by adsorbent technique. Science 107:549

    Article  CAS  PubMed  Google Scholar 

  • Walker RB (1948) Molybdenum deficiency in serpentine barren soils. Science 108:473–475

    Article  CAS  PubMed  Google Scholar 

  • Walker RB (2001) Low molybdenum status of serpentine soils of western North America. S Afr J Sci 97:565–568

    CAS  Google Scholar 

  • Walker RB, Walker HM, Ashworth PR (1955) Calcium-magnesium nutrition with special reference to serpentine soils. Plant Physiol 30:214–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wild H (1974) Indigenous plants and chromium in Rhodesia. Kirkia:233–241

Download references

Acknowledgments

The authors acknowledge the French National Research Agency through the national “Investissements d’avenir” program (ANR-10-LABX-21 - LABEX RESSOURCES21) for funding Dr. van der Ent's postdoctoral position and for supporting Mr. Nkrumah's PhD research. Mr. Nkrumah is the recipient of an International Postgraduate Research Scholarship (IPRS) and a UQ Centennial Scholarship at The University of Queensland, Australia. The Nickel Producers Environmental Research Association (NiPERA) supported Dr. Chaney’s work on this evaluation, and findings of research undertaken in cooperation with J.S. Angle, Y.-M Li, R.D. Reeves, R.J. Roseberg, E. Brewer and U. Kukier included herein. We would like to thank the editor and two anonymous reviewers for their constructive comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Nti Nkrumah.

Additional information

Responsible Editor: Fangjie Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nkrumah, P.N., Baker, A.J.M., Chaney, R.L. et al. Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant Soil 406, 55–69 (2016). https://doi.org/10.1007/s11104-016-2859-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2859-4

Keywords

Navigation