Skip to main content
Log in

The Co–Ni–Zr Phase Diagram in the Zr–ZrCo–ZrNi Region I. Phase Equilibria in the Zr–ZrCo–ZrNi System at Subsolidus Temperature, 900°C, and 800°C

  • PHYSICOCHEMICAL MATERIALS RESEARCH
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The phase equilibria in the Zr–ZrCo–ZrNi system at subsolidus temperature and at 900 and 800°C were first studied using physicochemical analysis methods, and solidus surfaces and isothermal sections at 900 and 800°C were constructed. Isomorphic Zr2Co and Zr2Ni compounds with a tetragonal crystal structure of AlCu2 (θ) type form a continuous series of solid solutions dividing the Zr–ZrCo–ZrNi system into two subsystems: Zr–Zr2Co–Zr2Ni and ZrCo–ZrNi–Zr2Ni–Zr2Co. The equilibria on the solidus surface of the Zr–Zr2Co–ZrCo–Zr2Ni system and at 900°C differ significantly. This is associated with the Zr3Co-based η phase formed by peritectoid reaction 〈β − Zr〉 + 〈Zr2Co〉 → η at 980°C, being close to theL ↔ θ + β eutectic crystallization temperature (986°C), in the binary Zr–Co system. At 900 and 800°C, the 𝜂 phase dissolves up to 14.5% Ni. The solidus surface of the ternary Zr2Co–Zr2Ni–ZrCo–ZrNi system shows a three-phase equilibrium of the θ phase with the ZrCo (δ) and ZrNi (δ2) phases of the ZrCo–ZrNi quasibinary section: δ + δ2 + θ. The plane of this tie-line triangle extends significantly at 900 and 800°C as the solubility of nickel in the cubic ZrCo-based phase of CsCl type changes. At room temperature, all alloys of the ZrCo–ZrNi–Zr2Ni–Zr2Co subsystem should contain three phases: δ + δ2 + θ. The solidus surface of the Zr–ZrCo ZrNi system is thus completed by surfaces corresponding to the homogeneity regions of the δ, δ2, δ, and β phases, θ + δ + δ2 tie-line triangle plane, and ruled surfaces representing the upper boundary of the two-phase θ + δ2, θ + δ, and θ + δ volumes. At 900 and 800°C, two three-phase equilibria, η + θ + β and δ + δ2 + θ, are observed in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Composition is in at.% here and further in the text.

References

  1. E.E. Novikova, Ye.V. Tatyanin, and V.G. Kurdjumov, “Peculiarities of deformation-induced amorphization in CoZrNi alloys,” Scr. Metall. Mater., 33, No. 6, 851–855 (1995).

    Article  CAS  Google Scholar 

  2. A. Cziraki, F. Zhou, R. Luck, K. Lu, A. Lovas, and I. Bakonyi, “Formation and microstructure of nanocrystalline phases in Ni-rich melt-quenched Zr–Ni alloys,” Scr. Mater., 44, 1287–1290 (2001).

    Article  CAS  Google Scholar 

  3. J.C. Sun, S. Li, and S.J. Li, “The effects of subsolution of Ti and La for Zr in ZrMn0.7V0.2Co0.1Ni1.2 hydrogen storage alloys on the phase structure and electrochemical properties,” J. Alloys Compd., 630, 446–447 (2007).

    Google Scholar 

  4. S. J. Pang, T. Zhang, K. Asaui, and A. Inoue, “Glassy NiTa–Ti–Zr(Co) alloys with high thermal stability,” Mater. Trans., 43, 1771 (2002).

    Article  CAS  Google Scholar 

  5. T. Zhang, Sh. Pang, K. Asami, and A. Inoue, “Glassy Ni–Ta–Ti–Zr(Co) alloys with high thermal stability and high corrosion resistance,” Mater. Trans., 44, No. 11, 2322–2325 (2003).

    Article  CAS  Google Scholar 

  6. J.Y. Huot, A. Van Neste, L. Brossard, and R. Schulz, “Amorphous Ni–Co–Zr alloys for water electrolysis in alkaline medium at 70°C,” Surf. Coat. Technol., 35, No. 3–4, 241–262 (1988).

    Article  CAS  Google Scholar 

  7. K. Yamaya, T. Sambongi, and T. Mitsui, “Superconductivity and magnetic susceptibility of Zr2Co–Zr2Ni system,” J. Phys. Soc. Jpn., 29, No. 4, 879–884 (1970).

    Article  CAS  Google Scholar 

  8. E.E. Havinga, H. Damsma, and P. Hokkeling, “Compounds and pseudobinary alloys with the CuAl2 (C16)-type structure. I. Preparation and X-ray results,” J. Less-Common Met., 27, 169–186 (1972).

    Article  CAS  Google Scholar 

  9. V.G. Ivanchenko, T.O. Kosorukova, and V.V. Pogorila, “Study of phase equilibria in the Zr2Co–Zr2Ni system,” Metalloznav. Obrob. Met., 1, 19–22 (2004).

    Google Scholar 

  10. V.G. Ivanchenko and T.A. Kosorukova, “Phase equilibria in the ZrCo–ZrNi–Zr2Ni–Zr2Co partial system,” Chem. Met. Alloys, 1, No. 1, 73–75 (2008).

    Article  Google Scholar 

  11. G. Zhou, Z. Liu, Z. Jin, and D. Zeng, “Phase equilibria of the Co–Ni–Zr system at 1198 K,” Mater. Lett., 64, No. 4, 549–551 (2010).

    Article  CAS  Google Scholar 

  12. X. Liu, S. Yang, H. Xiong, W. Yu, Y. Cheng, H. Wu, and C. Wang, “Experimental investigation of phase equilibria in the Co–Ni–Zr ternary system,” Int. J. Mater. Res., 107, 1–7 (2016).

    Article  Google Scholar 

  13. O.L. Semenova, V.M. Petyukh, and O.S. Fomichov, “The constitution of Co–Zr phase diagram,” Powder Metall. Met. Ceram., 54, No. 9–10, 583–589 (2016).

    Article  CAS  Google Scholar 

  14. O.L. Semenova, V.M. Petyukh, and O.S. Fomichov, “Specification of elements in phase equilibria in the Zr–Ni system,” Proc. 20th Ukr. Conf. Inorganic Chemistry [in Ukrainian], (September 17–20, 2018, Dnipro, Ukraine), Dnipro (2018), p. 185.

  15. O.L. Semenova, V.M. Petyukh, and O.S. Fomichov, “The quasibinary ZrCo–ZrNi phase diagram,” Powder Metall. Met. Ceram., 56, No. 3–4, 210–219 (2017).

    Article  CAS  Google Scholar 

  16. N. Bochvar, O. Abdulov, T. Dobatkina, M. Kareva, and O. Semenova, Ni–Zr Binary Phase Diagram Evaluation edited by G. Effenberg, Materials Science International, Stuttgart (2015), Document ID: 20.11406.1.2.

  17. P.I. Kripiakevich, V.Ya. Markiv, and V.V. Burnasheva, “Crystal structure of Zr3Co compound,” Dop. Akad. Nauk USSR, No. 6, 551–553 (1970).

  18. D.M. Bailey and J.F. Smith, “A note on the structure of Zr2Co,” Acta Cryst., 14, 1084 (1961).

    Article  CAS  Google Scholar 

  19. W.P. Pechin, D.E. Williams, and W.L. Larsen, “The zirconium–cobalt alloy system,” Trans. ASM, 57, 464–473 (1964).

    CAS  Google Scholar 

  20. M.E. Kirpatrick, J.F. Smith, and W.L. Larsen, “The structures of NiZr2, NiZr and their hafnium analogs,” Acta Cryst., 15, 252–255 (1962).

    Article  Google Scholar 

  21. G. Nolze, “PowderCell: A mixture between crystal structure visualizer, simulation and refinement tool,” in: Proc. 2nd Int. School on Powder Diffraction (January 20–23, 2002, IACS, Kolkata, India), Kolkata (2002), pp. 146–155.

  22. N. Wang, C. Li, Z. Du, and F. Wang, “Experimental study and thermodynamic reassessment of the Ni–Zr system,” Calphad, 31, 413–421 (2007).

    Article  CAS  Google Scholar 

  23. J.K. Stalick, L.A. Bendersky, and R.M. Waterstrat, “One-dimensional disorder in Zr9M11 (M = Ni, Pd, Pt) and low-temperature atomic mobility in Zr9Ni11,” J. Phys. Condens. Matter, 20, 1–10 (2008).

    Article  Google Scholar 

  24. J.L. Glimois, C. Becle, G. Develey, and J.M. Moreau, “Crystal structure of the intermetallic compound Ni11Zr9,” J. Less-Common Met., 64, No. 1, 87–90 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O.S. Fomichov.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 59, Nos. 9–10 (535), pp. 101–114, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenova, O., Petyukh, V. & Fomichov, O. The Co–Ni–Zr Phase Diagram in the Zr–ZrCo–ZrNi Region I. Phase Equilibria in the Zr–ZrCo–ZrNi System at Subsolidus Temperature, 900°C, and 800°C. Powder Metall Met Ceram 59, 564–575 (2021). https://doi.org/10.1007/s11106-021-00186-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-021-00186-5

Keywords

Navigation