Skip to main content

Advertisement

Log in

Characterizing nonlocality of pure symmetric three-qubit states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We explore nonlocality of three-qubit pure symmetric states shared between Alice, Bob and Charlie using the Clauser–Horne–Shimony–Holt (CHSH) inequality. We make use of the elegant parametrization in the canonical form of these states, proposed by Meill and Meyer (Phys Rev A 96:062310, 2017) based on Majorana geometric representation. The reduced two-qubit states, extracted from an arbitrary pure entangled symmetric three-qubit state, do not violate the CHSH inequality, and hence, they are CHSH-local. However, when Alice and Bob perform a CHSH test, after conditioning over measurement results of Charlie, nonlocality of the state is revealed. We have also shown that two different families of three-qubit pure symmetric states, consisting of two and three distinct spinors (qubits), respectively, can be distinguished based on the strength of violation in the conditional CHSH nonlocality test. Furthermore, we identify six of the 46 classes of tight Bell inequalities in the three-party, two-setting, two-outcome, i.e., (3,2,2) scenario (López-Rosa et al. in Phys Rev A 94:062121, 2016). Among the two inequivalent families of three-qubit pure symmetric states, only the states belonging to three distinct spinor class show maximum violations of these six tight Bell inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In the case of a symmetric two-qubit density matrix we have \(T=T^\dag \). Thus, the eigenvalues \( t_1^2,\, t_2^2,\, t_3^2\) of \(T^\dag \, T\) are determined by those of the real symmetric matrix T itself.

  2. Note that \(\langle \mathrm{CHSH}\rangle _{c=-1,\mathrm{opt}}=2\, \sqrt{(t^{c=-1}_1)^2+(t^{c=-1}_2)^2}\) is identically equal to \(\langle \mathrm{CHSH}\rangle _{c=1,\mathrm{opt}}\), when Charlie changes his measurement orientation \({\hat{n}}(\theta ,\phi )\) to \(-{\hat{n}}(\theta ,\phi )={\hat{n}}(\pi -\theta ,\pi +\phi ).\)

  3. The three-qubit states \(\vert \psi ^{(k)}_{\mathrm{ABC}}\rangle , k=2,5,22,26,33,39\) are the ones which exhibit identical pairwise concurrences \(C_{\mathrm{AB}}=C_{\mathrm{BC}}=C_{\mathrm{AC}}\) (see Table VI of Ref. [20]). These states are found to be local unitary equivalent to permutation symmetric states \(\vert \psi ^{(k)}_{\mathrm{sym}}\rangle \).

  4. We determine the explicit form \(\vert \beta \rangle =\cos (\beta /2)\vert 0\rangle +\sin (\beta /2)\vert 1\rangle \) of the constituent qubit states of the three-qubit pure symmetric states \(\vert \psi ^{(k)}_{\mathrm{sym}}\rangle \), \(k=2,\,5,\,22,\,33,\,39\) by solving the Majorana polynomial equation [10] \(b^{(k)}~+~3\,c^{(k)} z^2-a^{(k)}\, z^3 =0,\) where \(z=\tan (\beta /2)\). The Majorana polynomial equation associated with the state \(\vert \psi ^{(26)}_{\mathrm{sym}}\rangle \) reduces to \(z^{-1}\,(-1+\sqrt{3}\,z^2)=0\).

References

  1. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  2. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  3. Cavalcanti, D., Almeida, M.L., Scarani, V., Acin, A.: Quantum networks reveal quantum nonlocality. Nat. Commun. 2, 1 (2011)

    Article  Google Scholar 

  4. Chaves, R., Acin, A., Aolita, L., Cavalcanti, D.: Detecting nonlocality of noisy multipartite states with the Clauser–Horne–Shimony–Holt inequality. Phys. Rev. A 89, 042106 (2014)

    Article  ADS  Google Scholar 

  5. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  6. Tura, J., Augusiak, R., Sainz, A.B., Vértesi, T., Lewenstein, M., Acin, A.: Detecting non-locality in multipartite quantum systems with two-body correlation functions. Science 344, 1256 (2014)

    Article  ADS  Google Scholar 

  7. Tura, J., Augusiak, R., Sainz, A.B., Lücke, B., Klempt, C., Lewenstein, M., Acin, A.: Nonlocality in many-body quantum systems detected with two-body correlators. Ann. Phys. 362, 370 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. De Sen, A., Sen, U., Wieśniak, M., Kaszlikowski, D., Żukowski, M.: Multiqubit W states lead to stronger nonclassicality than Greenberger–Horne–Zeilinger states. Phys. Rev. A 68, 062306 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bastin, T., Krins, S., Mathonet, P., Godefroid, M., Lamata, L., Solano, F.: Operational families of entanglement classes for symmetric \(N\)-qubit states. Phys. Rev. Lett. 103, 070503 (2009)

    Article  ADS  Google Scholar 

  10. Usha Devi, A.R., Sudha, Rajagopal, A.K.: Majorana representation of symmetric multiqubit states. Quantum Inf. Proc. 11, 685 (2012)

  11. Wang, Z., Markham, D.: Nonlocality of symmetric states. Phys. Rev. Lett. 108, 210407 (2012)

    Article  ADS  Google Scholar 

  12. Korbicz, J.K., Gühne, O., Lewenstein, M., Haffner, H., Roos, C.F., Blatt, R.: Generalized spin-squeezing inequalities in \(N\)-qubit systems: theory and experiment. Phys. Rev. A 74, 052319 (2006)

    Article  ADS  Google Scholar 

  13. Usha Devi, A.R., Uma, M.S., Prabhu, R., Sudha: Local invariants and pairwise entanglement in symmetric multi-qubit system. Int. J. Mod. Phys. B 20, 1917 (2006)

  14. Usha Devi, A.R., Prabhu, R., Rajagopal, A.K.: Characterizing multiparticle entanglement in symmetric \(N\)-qubit states via negativity of covariance matrices. Phys. Rev. Lett. 98, 060501 (2007)

    Article  Google Scholar 

  15. Usha Devi, A.R., Prabhu, R., Rajagopal, A.K.: Collective multipolelike signatures of entanglement in symmetric \(N\)-qubit systems. Phys. Rev. A 76, 012322 (2007)

    Article  ADS  Google Scholar 

  16. Meill, A., Meyer, D.A.: Symmetric three-qubit-state invariants. Phys. Rev. A 96, 062310 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Majorana, E.: Atomi Orientati in Campo Magnetico Variabile. Nuovo Cimento 9, 43 (1932)

    Article  Google Scholar 

  18. Pitowsky, I., Svozil, K.: Optimal tests of quantum nonlocality. Phys. Rev. A 64, 014102 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  19. Śliwa, C.: Symmetries of the Bell correlation inequalities. Phys. Lett. A 317, 165 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  20. López-Rosa, S., Xu, Z.-P., Cabello, A.: Maximum nonlocality in the \((3,2,2)\) scenario. Phys. Rev. A 94, 062121 (2016)

    Article  ADS  Google Scholar 

  21. Anwer, H., Nawareg, M., Cabello, A., Bourennane, M.: Experimental test of maximal tripartite nonlocality using an entangled state and local measurements that are maximally incompatible. Phys. Rev. A 100, 022104 (2019)

    Article  ADS  Google Scholar 

  22. Popescu, S., Rohrlich, D.: Genuine quantum non-locality. Phys. Lett. A 166, 293 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  23. Horodecki, R., Horodecki, P., Horodecki, M.: Violating Bell inequality by mixed spin-1/2 states: necessary and sufficient condition. Phys. Lett. A 200, 340 (1995)

  24. Greenberger, D.M., Horne, M.A., Zeilinger, A.: In: Kafatos, M. (ed.) Bell‘s Theorem, Quantum Theory, and Conceptions of the Universe. Kluwer Academic, Dordrecht (1989)

  25. Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154, 201 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  26. Masanes, L.: Extremal quantum correlations for N parties with two dichotomic observables per site. arXiv:quant-ph/0512100

  27. Qin, H.-H., Fei, S.-M., Li-Jost, X.: Trade-off relations of Bell violations among pairwise qubit systems. Phys. Rev. A 92, 062339 (2015)

    Article  ADS  Google Scholar 

  28. Cheng, S., Hall, M.J.W.: Anisotropic invariance and the distribution of quantum correlations. Phys. Rev. Lett. 118, 010401 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Professor A. K. Rajagopal for going through the manuscript and for making insightful suggestions. KA acknowledges financial support from UGC-RGNF, India. ASH is supported by the Foundation for Polish Science (IRAP Project, ICTQT, contract no. 2018/MAB/5, co-financed by EU within Smart Growth Operational Programme). HSK acknowledges the support of NCN through Grant SHENG (2018/30/Q/ST2/00625). This work was partly done when HSK was at The Institute of Mathematical Sciences, Chennai, India and progressed further at ICTQT, Gdansk, Poland. Sudha and ARU are supported by the Department of Science and Technology(DST), India, through Project No. DST/ICPS/QUST/Theme-2/2019 (Proposal Ref. No. 107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjali, K., Hejamadi, A.S., Karthik, H.S. et al. Characterizing nonlocality of pure symmetric three-qubit states. Quantum Inf Process 20, 187 (2021). https://doi.org/10.1007/s11128-021-03124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03124-x

Keywords

Navigation