Skip to main content
Log in

Zagier duality for level p weakly holomorphic modular forms

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We prove Zagier duality between the Fourier coefficients of canonical bases for spaces of weakly holomorphic modular forms of prime level p with \(11 \le p \le 37\) with poles only at the cusp at \(\infty \), and special cases of duality for an infinite class of prime levels. We derive generating functions for the bases for genus 1 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.: Spaces of weakly holomorphic modular forms in level 52. Thesis (MS), Brigham Young University, (2017). https://math.byu.edu/~jenkins/DanielAdamsThesis.pdf

  2. Ahlgren, S., Masri, N., Rouse, J.: Vanishing of modular forms at infinity. Proc. Am. Math. Soc. 137(4), 1205–1214 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bringmann, K., Ono, K.: Arithmetic properties of coefficients of half-integral weight Maass-Poincaré series. Math. Ann. 337(3), 591–612 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bringmann, K., Kane, B., Rhoades, R.C.: Duality and differential operators for harmonic Maass forms. In: Gunning, R.C. (ed.) From Fourier Analysis and Number Theory to Radon Transforms and Geometry. Developments in Mathematics, vol. 28, pp. 85–106. Springer, New York (2013)

    Chapter  Google Scholar 

  5. Choi, D., Lim, S.: Structures for pairs of mock modular forms with the Zagier duality. Trans. Am. Math. Soc. 367(8), 5831–5861 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diamond, F., Shurman, J.: A First Course in Modular Forms. Graduate Texts in Mathematics, vol. 228. Springer, New York (2005)

    MATH  Google Scholar 

  7. Duke, W., Jenkins, P.: On the zeros and coefficients of certain weakly holomorphic modular forms. Pure Appl. Math. Q. 4(4), Special Issue: In honor of Jean–Pierre Serre. Part 1, 1327–1340 (2008)

  8. El-Guindy, A.: Fourier expansions with modular form coefficients. Int. J. Number Theory 5(8), 1433–1446 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Garthwaite, S.A., Jenkins, P.: Zeros of weakly holomorphic modular forms of levels 2 and 3. Math. Res. Lett. 20(4), 657–674 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Griffin, M., Ono, K., Rolen, L.: Ramanujan’s mock theta functions. Proc. Natl. Acad. Sci. USA 110(15), 5765–5768 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haddock, A., Jenkins, P.: Zeros of weakly holomorphic modular forms of level 4. Int. J. Number Theory 10(2), 455–470 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hendrik, J., Funke, J.: On two geometric theta lifts. Duke Math. J. 125(1), 45–90 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Iba, V., Jenkins, P., Warnick, M.: Congruences for coefficients of modular functions in genus zero levels. Preprint arXiv arXiv:1711.06239 (2017)

  14. Jenkins, P., Thornton, D.J.: Congruences for coefficients of modular functions. Ramanujan J. 38(3), 619–628 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jenkins, P., Thornton, D.J.: Weakly holomorphic modular forms in prime power levels of genus zero. arXiv:1703.08145 [math.NT] (2016)

  16. Ligozat, G.: Courbes modulaires de genre \(1\), Société Mathématique de France, Paris. Bull. Soc. Math. France, Mém. 43, Supplément au Bull. Soc. Math. France Tome 103, no. 3, (1975)

  17. Miranda, R.: Algebraic curves and Riemann surfaces, Graduate Studies in Mathematics, vol. 5. American Mathematical Society, Providence, RI (1995)

    Google Scholar 

  18. Newman, M.: Construction and application of a class of modular functions. Proc. London. Math. Soc. (3) 7, 334–350 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  19. Newman, M.: Construction and application of a class of modular functions. II. Proc. London Math. Soc. (3) 9, 373–387 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ogg, A.P.: On the Weierstrass points of \(X_{0}(N)\). Illinois J. Math. 22(1), 31–35 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rouse, J., Webb, J.J.: On spaces of modular forms spanned by eta-quotients. Adv. Math. 272, 200–224 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wilt, V., William, C.: Weakly holomorphic modular forms in level 64. Thesis (MS), Brigham Young University, (2017). https://math.byu.edu/~jenkins/KitVanderWiltThesis.pdf

  23. Zagier, D.: Traces of Singular Moduli, Motives, Polylogarithms and Hodge Theory, Part I (Irvine, CA, 1998). International Press Lecture Series, vol. 3, pp. 211–244. International Press, Somerville, MA (2002)

    Google Scholar 

  24. Zhang, Y.: Zagier duality and integrality of Fourier coefficients for weakly holomorphic modular forms. J. Number Theory 155, 139–162 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Scott Ahlgren, Nick Andersen, Michael Griffin, Ben Kane, and Jeremy Rouse for their invaluable insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant Molnar.

Additional information

This work was partially supported by a Grant from the Simons Foundation (\(\# 281876\) to Paul Jenkins).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenkins, P., Molnar, G. Zagier duality for level p weakly holomorphic modular forms. Ramanujan J 50, 93–109 (2019). https://doi.org/10.1007/s11139-018-0009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-018-0009-8

Keywords

Mathematics Subject Classification

Navigation