Skip to main content
Log in

Development of High-Power Millimeter-Wave Surface-Wave Generators Based on Relativistic Ribbon Electron Beams

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We analyze theoretically millimeter-wave surface-wave generators based on relativistic ribbon electron beams within the framework of the averaged quasioptical model, as well as using direct numerical modeling by the Particle-in-Cell method. The regime of excitation of π modes and the regime of the backward-wave oscillator based on a surface wave are studied. The possibility to achieve generation of pulsed radiation at a frequency of 75 GHz with a power of up to 100 MW on the basis of the SINUKI acceleration (IAP RAS) is demonstrated. Experiments have been performed to test experimentally the formation of a relativistic ribbon electron beam with a particle energy of 600 keV, a current of up to 1 kA, and a width of up to 2 cm, which will be used to feed the developed generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.P.Bugaev, V. I. Kanavets, V. I.Koshelev, and V.A.Cherepenin, Relativistic Multiwave Microwave Generators [in Russian], Nauka, Novosibirsk (1991).

    Google Scholar 

  2. V. L. Bratman, G. G. Denisov, S.D.Korovin, et al., IEEE Trans. Plasma Sci., PS-15, No. 1, 2–15 (1987). https://doi.org/10.1109/TPS.1987.4316655

    Article  ADS  Google Scholar 

  3. A. N. Vlasov, A. G. Shkvarunets, J.C.Rodgers, et al., IEEE Trans. Plasma Sci., 28, No. 3, 550–560 (2000). https://doi.org/10.1109/27.887671

    Article  ADS  Google Scholar 

  4. G.Wang, J.Wang, C. Tong, X. Li, et al., Phys. Plasmas, 20, 043105. https://doi.org/10.1063/1.4799822

  5. G.Wang, J.Wang, P. Zeng, et al., Phys. Plasmas, 23, 023104 (2016). https://doi.org/10.1063/1.4941098

    Article  ADS  Google Scholar 

  6. N.F. Kovalev and V. I. Petrukhina, Radiotekh. Élektron., 20, No. 7. 1547–1550 (1975).

    ADS  Google Scholar 

  7. N. F.Kovalev, M. I.Petelin, and M. D. Raizer, JETP Lett., 18, No. 4, 138 (1973).

    ADS  Google Scholar 

  8. A. S. Elchaninov, F.Y. Zagulov, N. F. Kovalev, et al., Pis’ma Zh. Tekh. Fiz., 6, No. 7, 443-447 (1980).

  9. A. V. Gunin, A. I.Klimov, S.D.Korovin, et al., IEEE Trans. Plasma Sci., 26, No. 3, 326–331 (1998). https://doi.org/10.1109/27.700761

    Article  ADS  Google Scholar 

  10. V. V.Rostov, E.M.Totmeninov, and M. I.Yalandin, Tech. Phys., 53, No. 11, 1471-1478 (2008). https://doi.org/10.1134/S1063784208110121

    Article  Google Scholar 

  11. N. F.Kovalev, A. V. Palitsin, and M. I. Fuks, Radiophys. Quantum Electron., 49, No. 2, 93–107 (2006). https://doi.org/10.1007/s11141-006-0041-1

    Article  ADS  Google Scholar 

  12. M.B.Goykhman, A.V.Gromov, V.V.Kladukhin, et al., Tech. Phys. Lett., 37, No. 7, 333 (2011). https://doi.org/10.1134/S1063785011040109

    Article  ADS  Google Scholar 

  13. M.B.Goykhman, A.V.Gromov, V.V.Kladukhin, et al., Tech. Phys., 57, No. 6, 877-880 (2012).

    Article  Google Scholar 

  14. N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, and V.Yu. Zaslavsky, Appl. Phys. Lett., 99, 121505 (2011). https://doi.org/10.1063/1.3641868

    Article  ADS  Google Scholar 

  15. N. S. Ginzburg, A. M. Malkin, I.V. Zheleznov, et al., J. Exp. Theor. Phys., 117, No. 6, 975–987 (2013). https://doi.org/10.1134/S1063776113140124

    Article  Google Scholar 

  16. N. S. Ginzburg, A. M. Malkin, V.Yu. Zaslavskiy, et al., Radiophys. Quantum Electron., 56, Nos. 8–9, 508-531 (2014).

    Article  ADS  Google Scholar 

  17. A. V. Arzhannikov, V.T. Astrelin, and V. A.Kapitonov, Generation of Ribbon REB in a Magnetically Insulated Diode and Their Transportation at an Injection Current Being Lower than the Vacuum limit. Preprint 89–81 [in Russian], Inst. Nucl. Phys. Siberian Br. Russ. Acad. Sci., Novosibirsk (1989).

  18. A.V.Arzhannikov, V. S.Nikolaev, S. L. Sinitsky, and M.V.Yushkov, J. Appl. Phys., 72, No. 4, 1657–1663. https://doi.org/10.1063/1.351687

  19. A.V.Arzhannikov and S. L. Sinitsky, Kiloampere Electron Beams for Pumping of Oscillations in Vacuum and Plasmas [in Russian], Novosibirsk State Univ. Publ. (2016).

    Google Scholar 

  20. M. B. Goikhman, A.V.Gromov, N. F.Kovalev, and A.V. Palitsin, Radiophys. Quantum Electron., 53, Nos. 5–6, 334-337 (2010). https://doi.org/10.1007/s11141-010-9232-x

    Article  ADS  Google Scholar 

  21. M. B. Goikhman, A.V.Gromov, N. F.Kovalev, and A.V.Palitsin, Radiophys. Quantum Electron, 59, No 7, 592–595 (2016). https://doi.org/10.1007/s11141-016-9725-3

    Article  ADS  Google Scholar 

  22. http://cst.com

  23. E. E. Lysenko, O. F. Pishko, and S. A. Churilova, Radiofiz. Radioastron., 4, No. 1, 13–20 (1999).

    Google Scholar 

  24. Kazarinov R., Henry C. // IEEE J. Quantum Electron., 21, No. 2, 144–150 (1985). https://doi.org/10.1109/JQE.1985.1072627

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I.V. Zheleznov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 5–6, pp. 509–520, May–June 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkin, A.M., Zaslavsky, V., Zheleznov, I. et al. Development of High-Power Millimeter-Wave Surface-Wave Generators Based on Relativistic Ribbon Electron Beams. Radiophys Quantum El 63, 458–468 (2020). https://doi.org/10.1007/s11141-021-10071-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10071-1

Navigation