Skip to main content
Log in

Kinetics in the thermal and catalytic amidation of C18 fatty acids with ethanolamine for the production of pharmaceuticals

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

For the first time, in this work, C18 fatty acid amidation with equimolar amounts of ethanolamine was studied both in the absence and presence of heterogeneous catalysts in hexane as a solvent at 180 °C. The products, saturated, and especially unsaturated fatty alkanol amides, which exhibit endocannabinoid activities, have been conventionally prepared using toxic and corrosive homogeneous catalysts. The results revealed that noncatalytic thermal amidation of stearic acid proceeding much faster for stearic than for oleic or linoleic acids. Furthermore, microporous H-Beta-150 was the most active catalyst. Mesoporous, H-MCM-41 with lower acidity was also active in oleic acid amidation, whereas more acidic, mesoporous H-MCM-36 gave lower yield due to formation of esteramides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Avraham Y, Katzhendler J, Vorobiev L, Merchavia S, Listman C, Kunkes E, Harfoush F, Salameh S, Ezra AF, Grogoriadis NC, Berry EM, Najajreh Y (2013) Novel acylethanolamide derivatives that modulate body weight through enhancement of hypothalamic pro-opiomelanocortin (POMC) and/or decreased neuropeptide Y (NPY). J Med Chem 56:1811–1829

    Article  CAS  Google Scholar 

  2. Tkacheva A, Dosmagambetova I, Chapelliere Y, Mäki-Arvela P, Hachemi I, Savela R, Leino R, Viegas C, Kumar N, Eränen K, Hemming J, Smeds A, Murzin DYu (2015) Pharmaceuticals and surfactants from alga-derived feedstock: amidation of fatty acids and their derivatives. ChemSusChem 8:2670–2680

    Article  CAS  Google Scholar 

  3. Sheldon RA (2009) The E factor: fifteen years on. Green Chem 9:1273–1283

    Article  Google Scholar 

  4. Mäki-Arvela P, Holmbom B, Salmi T, Murzin DYu (2007) Recent progress in synthesis of fine and specialty chemicals from wood and other biomass by heterogeneous catalytic processes. Catal Rev 49(3):197–340

    Article  Google Scholar 

  5. Dhellot JR, Matouba E, Maloumbi MG, Nzikou JM, Safou Ngoma DG, Linder M, Desobry S, Parmentier M (2006) Extraction, chemical composition and nutritional characterization of vegetable oils: case of Amaranthus hybridus (Var 1 and 2) of Congo Brazzaville. Afr J Biotechnol 5(11):1095–1101

    CAS  Google Scholar 

  6. Kuehl FA, Jacobs TA, Ganley OH, Ormond RE, Meisinger MAO (1957) The identification of N-(2-hydroxyethyl)-palmitamide as a naturally occurring anti-inflammatory agent. J Am Chem Soc 70:5577–5578

    Article  Google Scholar 

  7. Wyffels L, DeBruyne S, Blanckkaert P, Lambert DM, DeVos F (2009) Radiosynthesis, in vitro and in vivo evaluation of I-123-labeled ananamide analogous for mapping brain FAAH. Bioorg Med Chem 17:49–56

    Article  CAS  Google Scholar 

  8. Wyffels L, Muccioli GG, De Bruyne S, Moerman L, Sambre J, Lambert DM, DeVos F (2009) Synthesis, in vitro and in vivo evaluation, and radiolabeling of aryl ananamide analogues as candidate radioligands for in vivo imaging of fatty acid amide hydrolase in the brain. J Medic Chem 52:4613–4622

    Article  CAS  Google Scholar 

  9. Maccarrone M, Vanderstelt M, Rossi A, Veldink GA, Vliegenthart JA, Agro AF (1998) Anandamide hydrolysis by human cells in culture and brain*. J Biol Chem 273:32332–32339

    Article  CAS  Google Scholar 

  10. Berdyshev EV (1999) Inhibition of sea urchin fertilization by fatty acid ethanolamides and cannabinoids. Comp Biochem Physiol C 122:327–330

    Article  CAS  Google Scholar 

  11. Carnovali M, Ottria R, Pasqualetti S, Banfi G, Ciuffreda P, Mariotti M (2016) Effects of bioactive fatty acid amide derivatives in zebrafish scale model of bone metabolism and disease. Pharmacol Res 104:1–8

    Article  CAS  Google Scholar 

  12. Ottria R, Casati S, Ciuffreda P (2012) Optimized synthesis and characterization of N-acylethanolamines and O-acylethanolamines, important family of lipid-signalling molecules. Chem Phys Lipids 165:705–711

    Article  CAS  Google Scholar 

  13. Cravatt BF, Prosperogarcia O, Siuzdak G, Gilula NB, Henriksen SJ, Boger DL, Lerner RA (1995) Chemical characterization of a family of brain lipids that induce sleep. Science 268:1506–1509

    Article  CAS  Google Scholar 

  14. Mäki-Arvela P, Tkacheva A, Dosmagambetova I, Chapelliere Y, Hachemi I, Kumar N, Aho A, Murzin DYu (2016) Thermal and catalytic amidation of stearic acid with ethanolamine for production of pharmaceuticals and surfactants. Catal Today 59:1151–1164

    Article  Google Scholar 

  15. Musteata M, Musteata V, Dinu A, Florea M, Hoang VT, Trong-On D, Kaliaguine S, Parvulescu VI (2007) Acylation of different amino derivatives with fatty acids on UL-MFI-type catalysts. Pure Appl Chem 79:2059–2068

    Article  CAS  Google Scholar 

  16. Wang X, Wang T, Wang X (2012) An Improved method for synthesis of N-stearoyl and N-palmitoylethanolamine. J Am Oil Chem Soc 89:1305–1313

    CAS  Google Scholar 

  17. Wang X, Han Z, Chen Y, Jin Q, Huang J, Wang X (2016) Scalable synthesis of oleoyl ethanolamide by chemical amidation in a mixed solvent. J Am Oil Chem Soc 93:125–131

    Article  CAS  Google Scholar 

  18. Lundberg H, Tinnis F, Selander N, Adolfsson H (2014) Catalytic amide formation from non-activated carboxylic acids and amines. Chem Soc Rev 43:2714–2742

    Article  CAS  Google Scholar 

  19. Wang X, Chen Y, Jin Q, Huang J, Wang X (2013) Synthesis of linoleoyl ethanolamide. J Oleo Sci 62:427–433

    Article  CAS  Google Scholar 

  20. Käldström M, Kumar N, Heikkilä T, Tiitta M, Salmi T, Murzin DYu (2010) Formation of furfural in catalytic transformation of levoglucosan over mesoporous materials. ChemCatChem 2:539–546

    Article  Google Scholar 

  21. Fernández-Pérez M, Otero C (2001) Enzymatic synthesis of amide surfactants from ethanolamine. Enz Microb Technol 28:527–536

    Article  Google Scholar 

  22. Poojari Y, Clarson SJ (2013) Thermal stability of Candida antarctica lipase B immobilized on macroporous acrylic resin particles in organic media. Biocatal Agric Biotechnol 2:7–11

    Google Scholar 

  23. Kresge T, Leonovicz ME, Roth WJ, Vartuli JC, (1992) Mesoporous crystalline material. US patent 509,868,4 1992

  24. Dubinin MM (1989) Fundamentals of the theory of adsorption in micropores of carbon adsorbents: characteristics of their adsorption properties and microporous structures. Carbon 27:457–467

    Article  CAS  Google Scholar 

  25. Chen SG, Yang RT (1994) Theoretical basis for the potential theory adsorption isotherms. The Dubinin-Radushkevich and Dubinin-Astakhov equations. Langmuir 10:4244–4249

    Article  CAS  Google Scholar 

  26. MAUD program (http://www.ing.unitn.it/~maud) Accessed 20 Jun. 2016

  27. Emeis CA (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal 141:347–354

    Article  CAS  Google Scholar 

  28. Hypercube, Inc. HyperChem®Release 7 for Windows®, January 2002

  29. Mischenko KP, Ravdel AA (Eds) (1972) Handbook of physico-chemical parameters. Chemistry, Leningrad (in Russian)

  30. Käldström M, Kumar N, Heikkilä T, Murzin DYu (2011) Pillared H-MCM-36 mesoporous and H-MCM-22 microporous materials for conversion of levoglucosan: influence of varying acidity. Appl Catal A 397:13–21

    Article  Google Scholar 

  31. Guo W, Xiong C, Huang L, Li Q (2001) Synthesis and characterization of composite molecular sieves comprising zeolite Beta with MCM-41 structures. J Mater Chem 11:1886–1890

    Article  CAS  Google Scholar 

  32. de Vekki AB, Mozzhukhina TN (1997) Heterogeneous catalytical amidation of m-toluic acid by diethanolamine. Pet Chem 37:326–336

    Google Scholar 

  33. Rich MR (1993) Conformational analysis of arachidonic and related fatty acids using molecular cell research. Biochim et Biophys Acta (BBA)-Mol Cell Res 1178:87–96

    Article  CAS  Google Scholar 

  34. Tolvanen P, Mäki-Arvela P, Kumar N, Eränen K, Sjöholm R, Hemming J, Holmbom B, Salmi T, Yu Murzin D (2007) Thermal and catalytic oligomerisation of fatty acids. Appl Catal A 330:1–11

    Article  CAS  Google Scholar 

  35. Tolvanen P, Mäki-Arvela P, Eränen K, Wärnå J, Holmbom B, Salmi T, Murzin DY (2008) Thermal polymerisation and autoxidation of technical grade linoleic acid. J Am Oil Chem Soc 85:567–572

    Article  CAS  Google Scholar 

  36. Charville H, Jackson D, Hodges G, Whiting A (2014) The thermal and boron-catalysed direct amide formation reactions: mechanistically understudied yet important processes. Chem Commun 46:1813–1823

    Article  Google Scholar 

  37. Lilja J, Murzin DYu, Salmi T, Aumo J, Mäki-Arvela P, Sundell M (2002) Esterification of different acids over heterogeneous and homogeneous catalyst and correlation with the Taft equation. J Mol Catal A 182–183:555–563

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Yu Murzin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mäki-Arvela, P., Kumar, N., Chapelliere, Y. et al. Kinetics in the thermal and catalytic amidation of C18 fatty acids with ethanolamine for the production of pharmaceuticals. Reac Kinet Mech Cat 120, 15–29 (2017). https://doi.org/10.1007/s11144-016-1086-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1086-6

Keywords

Navigation