Skip to main content
Log in

Non-isothermal kinetic analysis of the oxidation of Al–50Mg powder mixture

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this research, non-isothermal kinetic analysis of the oxidation process of Al–50Mg (wt%) powder mixture was performed by employing differential scanning calorimetry and thermogravimetry analysis techniques. The research findings revealed that oxidation of this powder mixture was completed at lower temperatures compared to that of pure aluminum powder; and furthermore, it enjoyed a higher thermal efficiency than that of pure magnesium powder. Oxidation of this mixture powder led to the formation of magnesium oxide (MgO) and spinel phase (MgAl2O4) during the first and second oxidation steps, respectively. Moreover, to calculate the activation energy (E) over a wide range of degree of conversion (α), two isoconversional methods, including Starink and Friedman methods were used. Activation energies decreased as the reaction progressed at both stages, indicating that these stages were multi-step reactions. Furthermore, the invariant kinetic parameter method and fitting model were used to determine the empirical kinetic triplets (i.e. E, pre-exponential factor (A) and reaction model (g(α))). The obtained results showed that the first stage was controlled by the second order Avrami-Erofeev mechanism (A2), two-dimensional phase boundary reaction (R2), and two-dimensional diffusion (D2) models at heating rates of 5, 10, and 30 °C/min. The second stage was controlled by the third order Avrami-Erofeev mechanism (A3) and A2 at heating rates of 5 and 10 °C/min, while for a heating rate of 30 °C/min, the mechanism of reaction changes from A3 to A2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wen D (2010) Nanofuel as a potential secondary energy carrier. Energy Environ Sci 3:591. https://doi.org/10.1039/b906384f

    Article  CAS  Google Scholar 

  2. Tanvir S, Qiao L (2015) Effect of addition of energetic nanoparticles on droplet-burning rate of liquid fuels. J Propuls Power 31:408–415. https://doi.org/10.2514/1.B35500

    Article  CAS  Google Scholar 

  3. Velasco F, Guzmán S, Moral C, Bautista A (2013) Oxidation of micro-sized aluminium particles: hollow alumina spheres. Oxid Met 80:403–422. https://doi.org/10.1007/s11085-013-9408-9

    Article  CAS  Google Scholar 

  4. Goroshin S, Higgins A, Kamel M (2001) Powdered metals as fuel for hypersonic ramjets. 37th Jt Propuls Conf Exhib 1:AIAA-2001–3919. ****https://doi.org/10.2514/6.2001-3919

  5. Moser G, Tschamber V, Schönnenbeck C et al (2019) Non-isothermal oxidation and kinetic analysis of pure magnesium powder. J Therm Anal Calorim 136:2145–2155. https://doi.org/10.1007/s10973-018-7845-z

    Article  CAS  Google Scholar 

  6. Trunov M, Schoenitz M, Dreizin E (2005) Ignition of aluminum powders under different experimental conditions. Propellants Explos Pyrotech 30:36–43. https://doi.org/10.1002/prep.200400083

    Article  CAS  Google Scholar 

  7. Nie H, Schoenitz M, Dreizin EL (2016) Initial stages of oxidation of aluminum powder in oxygen. J Therm Anal Calorim 125:129–141. https://doi.org/10.1007/s10973-016-5369-y

    Article  CAS  Google Scholar 

  8. Schoenitz M, Patel B, Agboh O, Dreizin EL (2010) Oxidation of aluminum powders at high heating rates. Thermochim Acta 507–508:115–122. https://doi.org/10.1016/j.tca.2010.05.010

    Article  CAS  Google Scholar 

  9. Rouillard F, Cabet C, Wolski K, Pijolat M (2009) Oxidation of a chromia-forming nickel base alloy at high temperature in mixed diluted CO/H2O atmospheres. Corros Sci 51:752–760. https://doi.org/10.1016/j.corsci.2009.01.019

    Article  CAS  Google Scholar 

  10. Zhu X, Schoenitz M, Dreizin EL (2009) Aluminum powder oxidation in CO2 and mixed CO2/O2 environments. J Phys Chem C 113:6768–6773. https://doi.org/10.1021/jp809816u

    Article  CAS  Google Scholar 

  11. Chunmiao Y, Lifu Y, Chang L et al (2013) Thermal analysis of magnesium reactions with nitrogen/oxygen gas mixtures. J Hazard Mater 260:707–714. https://doi.org/10.1016/j.jhazmat.2013.06.047

    Article  CAS  PubMed  Google Scholar 

  12. Rufino B, Boulch F, Coulet M-V et al (2007) Influence of particles size on thermal properties of aluminium powder. Acta Mater 55:2815–2827. https://doi.org/10.1016/j.actamat.2006.12.017

    Article  CAS  Google Scholar 

  13. Hasani S, Panjepour M, Shamanian M (2014) Non-isothermal kinetic analysis of oxidation of pure aluminum powder particles. Oxid Met 81:299–313. https://doi.org/10.1007/s11085-013-9413-z

    Article  CAS  Google Scholar 

  14. Hasani S, Panjepour M, Shamanian M (2012) The oxidation mechanism of pure aluminum powder particles. Oxid Met 78:179–195. https://doi.org/10.1007/s11085-012-9299-1

    Article  CAS  Google Scholar 

  15. Hasani S, Soleymani AP, Panjepour M, Ghaei A (2014) A tension analysis during oxidation of pure aluminum powder particles: non-isothermal condition. Oxid Met 82:209–224. https://doi.org/10.1007/s11085-014-9488-1

    Article  CAS  Google Scholar 

  16. Trunov MA, Schoenitz M, Zhu X, Dreizin EL (2005) Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust Flame 140:310–318. https://doi.org/10.1016/j.combustflame.2004.10.010

    Article  CAS  Google Scholar 

  17. Li L, Zou H, Cai S (2016) Thermal behaviour of gas atomised Al–20Mg–2Zr alloy powder. Mater Sci Technol 32:863–870. https://doi.org/10.1179/1743284715Y.0000000096

    Article  CAS  Google Scholar 

  18. Legrand B, Marion M, Chauveau C et al (2001) Ignition and combustion of levitated magnesium and aluminum particles in carbon dioxide. Combust Sci Technol 165:151–174. https://doi.org/10.1080/00102200108935830

    Article  CAS  Google Scholar 

  19. Zou H, Li L, Cai S (2016) Effect of magnesium-rich phase on oxidation properties of atomized aluminum–magnesium powders. J Propuls Power 32:32–37. https://doi.org/10.2514/1.B35781

    Article  Google Scholar 

  20. Karimpour M, Eatezadi SR, Hasani S, Ghaei A (2019) The oxidation mechanism of pure magnesium powder particles: a mathematical approach. Metall Mater Trans B 50:1597–1607. https://doi.org/10.1007/s11663-019-01588-y

    Article  CAS  Google Scholar 

  21. Aly Y, Hoffman VK, Schoenitz M, Dreizin EL (2014) Reactive, mechanically alloyed Al·Mg powders with customized particle sizes and compositions. J Propuls Power 30:96–104. https://doi.org/10.2514/1.B35031

    Article  CAS  Google Scholar 

  22. Lomba R, Bernard S, Gillard P et al (2016) Comparison of combustion characteristics of magnesium and aluminum powders. Combust Sci Technol 188:1857–1877. https://doi.org/10.1080/00102202.2016.1211871

    Article  CAS  Google Scholar 

  23. Kim K (2015) Formation of endogenous MgO and MgAl2O4 particles and their possibility of acting as substrate for heterogeneous nucleation of aluminum grains. Surf Interface Anal 47:429–438. https://doi.org/10.1002/sia.5726

    Article  CAS  Google Scholar 

  24. Nie H, Schoenitz M, Dreizin EL (2016) Oxidation of magnesium: implication for aging and ignition. J Phys Chem C 120:974–983. https://doi.org/10.1021/acs.jpcc.5b08848

    Article  CAS  Google Scholar 

  25. Shoshin YL, Mudryy RS, Dreizin EL (2002) Preparation and characterization of energetic Al-Mg mechanical alloy powders. Combust Flame 128:259–269. https://doi.org/10.1016/S0010-2180(01)00351-0

    Article  CAS  Google Scholar 

  26. Xu C, Zou H, Cai S (2015) Thermal reactivity of Al–Mg–Li alloy powders. J Mater Res 30:2238–2246. https://doi.org/10.1557/jmr.2015.179

    Article  CAS  Google Scholar 

  27. Corcoran AL, Wang S, Aly Y, Dreizin EL (2015) Combustion of mechanically alloyed Al∙Mg powders in products of a hydrocarbon flame. Combust Sci Technol 187:807–825. https://doi.org/10.1080/00102202.2014.973951

    Article  CAS  Google Scholar 

  28. Schoenitz M, Dreizin EL (2003) Structure and properties of Al–Mg mechanical alloys. J Mater Res 18:1827–1836. https://doi.org/10.1557/JMR.2003.0255

    Article  CAS  Google Scholar 

  29. Matli P, Shakoor R, Amer Mohamed A, Gupta M (2016) Microwave rapid sintering of Al-metal matrix composites: a review on the effect of reinforcements. Microstruct Mech Prop Metals (Basel) 6:143. https://doi.org/10.3390/met6070143

    Article  CAS  Google Scholar 

  30. Batool SA, Wadood A, Rehman MAU (2019) Comparison of aluminum based alloys reinforced with intermetallic developed by powder metallurgy and arc melting routes. Soldag Inspeção. https://doi.org/10.1590/0104-9224/si24.19

    Article  Google Scholar 

  31. Faisal H, Darminto T, Zainuri M (2016) Interfacial reactions and wetting in Al-Mg sintered by powder metallurgy process. AIP Conf Proc 1725:020017. https://doi.org/10.1063/1.4945471

    Article  CAS  Google Scholar 

  32. Yuan X, Qu X, Yin H et al (2019) Effects of compaction velocity on the sinterability of Al-Fe-Cr-Ti PM alloy. Materials (Basel) 12:3005. https://doi.org/10.3390/ma12183005

    Article  CAS  Google Scholar 

  33. Starink M (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176. https://doi.org/10.1016/S0040-6031(03)00144-8

    Article  CAS  Google Scholar 

  34. Starink MJ (2007) Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral. J Mater Sci 42:483–489. https://doi.org/10.1007/s10853-006-1067-7

    Article  CAS  Google Scholar 

  35. Friedman HL (2007) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp 6:183–195. https://doi.org/10.1002/polc.5070060121

    Article  Google Scholar 

  36. Budrugeac P, Segal E, Pérez-Maqueda LA, Criado JM (2004) The use of the IKP method for evaluating the kinetic parameters and the conversion function of the thermal dehydrochlorination of PVC from non-isothermal data. Polym Degrad Stab 84:311–320. https://doi.org/10.1016/j.polymdegradstab.2004.01.017

    Article  CAS  Google Scholar 

  37. Jaafari Z, Seifoddini A, Hasani S, Rezaei-Shahreza P (2018) Kinetic analysis of crystallization process in [(Fe0.9Ni0.1)77Mo5P9C7.5B1.5]100−xCux (x = 0.1 at.%) BMG. J Therm Anal Calorim 134:1565–1574. https://doi.org/10.1007/s10973-018-7372-y

    Article  CAS  Google Scholar 

  38. Vyazovkin S, Burnham AK, Criado JM et al (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. https://doi.org/10.1016/j.tca.2011.03.034

    Article  CAS  Google Scholar 

  39. Khawam A, Flanagan DR (2006) Basics and applications of solid-state kinetics: a pharmaceutical perspective. J Pharm Sci 95:472–498. https://doi.org/10.1002/jps.20559

    Article  CAS  PubMed  Google Scholar 

  40. Hasani S, Shamanian M, Shafyei A et al (2014) Non-isothermal kinetic analysis on the phase transformations of Fe–Co–V alloy. Thermochim Acta 596:89–97. https://doi.org/10.1016/j.tca.2014.09.020

    Article  CAS  Google Scholar 

  41. Rezaei-Shahreza P, Seifoddini A, Hasani S (2017) Non-isothermal kinetic analysis of nano-crystallization process in (Fe41Co7Cr15Mo14Y2C15)94B6 amorphous alloy. Thermochim Acta 652:119–125. https://doi.org/10.1016/j.tca.2017.03.017

    Article  CAS  Google Scholar 

  42. Marinović-Cincović M, Janković B, Jovanović V et al (2013) The kinetic and thermodynamic analyses of non-isothermal degradation process of acrylonitrile–butadiene and ethylene–propylene–diene rubbers. Compos Part B Eng 45:321–332. https://doi.org/10.1016/j.compositesb.2012.08.006

    Article  CAS  Google Scholar 

  43. Burnham AK, Dinh LN (2007) A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim 89:479–490. https://doi.org/10.1007/s10973-006-8486-1

    Article  CAS  Google Scholar 

  44. Vyazovkin S, Wight CA (1999) Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta 340–341:53–68. https://doi.org/10.1016/S0040-6031(99)00253-1

    Article  Google Scholar 

  45. Uzun N, Çolak AT, Emen FM, Çılgı GK (2016) The thermal and detailed kinetic analysis of dipicolinate complexes. J Therm Anal Calorim 124:1735–1744. https://doi.org/10.1007/s10973-016-5251-y

    Article  CAS  Google Scholar 

  46. Ledeti A, Olariu T, Caunii A et al (2018) Evaluation of thermal stability and kinetic of degradation for levodopa in non-isothermal conditions. J Therm Anal Calorim 131:1881–1888. https://doi.org/10.1007/s10973-017-6671-z

    Article  CAS  Google Scholar 

  47. Campostrini R, Abdellatief M, Leoni M, Scardi P (2014) Activation energy in the thermal decomposition of MgH2 powders by coupled TG–MS measurements. J Therm Anal Calorim 116:225–240. https://doi.org/10.1007/s10973-013-3539-8

    Article  CAS  Google Scholar 

  48. Singh A, Sharma TC, Kishore P (2017) Thermal degradation kinetics and reaction models of 1,3,5-triamino-2,4,6-trinitrobenzene-based plastic-bonded explosives containing fluoropolymer matrices. J Therm Anal Calorim 129:1403–1414. https://doi.org/10.1007/s10973-017-6335-z

    Article  CAS  Google Scholar 

  49. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69. https://doi.org/10.1038/201068a0

    Article  CAS  Google Scholar 

  50. Gorbachev VM (1975) A solution of the exponential integral in the non-isothermal kinetics for linear heating. J Therm Anal 8:349–350. https://doi.org/10.1007/BF01904012

    Article  CAS  Google Scholar 

  51. Gallet J-J, Silly MG, El KM et al (2017) Chemical and kinetic insights into the thermal decomposition of an oxide layer on Si(111) from millisecond photoelectron spectroscopy. Sci Rep 7:14257. https://doi.org/10.1038/s41598-017-14532-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Al Soubaihi R, Saoud K, Dutta J (2018) Critical review of low-temperature CO oxidation and hysteresis phenomenon on heterogeneous catalysts. Catalysts 8:660. https://doi.org/10.3390/catal8120660

    Article  CAS  Google Scholar 

  53. Kasap S, Málek J, Svoboda R (2017) Thermal properties and thermal analysis: fundamentals, experimental techniques and applications. Springer Handbook of Electronic and Photonic Materials. Springer International Publishing, Cham, pp 1–1

    Chapter  Google Scholar 

  54. Hasani S, Panjepour M, Shamanian M (2012) Effect of atmosphere and heating rate on mechanism of MoSi2 formation during self-propagating high-temperature synthesis. J Therm Anal Calorim. https://doi.org/10.1007/s10973-011-1747-7

    Article  Google Scholar 

  55. Sanchez ME, Otero M, Gómez X, Morán A (2009) Thermogravimetric kinetic analysis of the combustion of biowastes. Renew Energy 34:1622–1627. https://doi.org/10.1016/j.renene.2008.11.011

    Article  CAS  Google Scholar 

  56. Vyazovkin S, Chrissafis K, Di Lorenzo ML et al (2014) ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1–23. https://doi.org/10.1016/j.tca.2014.05.036

    Article  CAS  Google Scholar 

  57. Hasani S, Panjepour M, Shamanian M (2010) A study of the effect of aluminum on MoSi2 formation by self-propagation high-temperature synthesis. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2010.04.159

    Article  Google Scholar 

  58. Xu C, Gao W (2000) Pilling-Bedworth ratio for oxidation of alloys. Mater Res Innov 3:231–235. https://doi.org/10.1007/s100190050008

    Article  CAS  Google Scholar 

  59. Tan Q, Atrens A, Mo N, Zhang M-X (2016) Oxidation of magnesium alloys at elevated temperatures in air: a review. Corros Sci 112:734–759. https://doi.org/10.1016/j.corsci.2016.06.018

    Article  CAS  Google Scholar 

  60. Khawam A, Flanagan DR (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110:17315–17328. https://doi.org/10.1021/jp062746a

    Article  CAS  PubMed  Google Scholar 

  61. Erceg M, Kovačić T, Perinović S (2008) Kinetic analysis of the non-isothermal degradation of poly(3-hydroxybutyrate) nanocomposites. Thermochim Acta 476:44–50. https://doi.org/10.1016/j.tca.2008.07.009

    Article  CAS  Google Scholar 

  62. Vrandečić NS, Erceg M, Jakić M, Klarić I (2010) Kinetic analysis of thermal degradation of poly(ethylene glycol) and poly(ethylene oxide)s of different molecular weight. Thermochim Acta 498:71–80. https://doi.org/10.1016/j.tca.2009.10.005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Hasani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3652 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, M., Seifoddini, A., Hasani, S. et al. Non-isothermal kinetic analysis of the oxidation of Al–50Mg powder mixture. Reac Kinet Mech Cat 131, 367–381 (2020). https://doi.org/10.1007/s11144-020-01845-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01845-1

Keywords

Navigation