Skip to main content
Log in

Photocatalytic degradation of tetracycline in a stirred tank: computational fluid dynamic modeling and data validation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, we performed a computational fluid dynamics (CFD) modeling of tetracycline photocatalytic degradation using rGO/ZnO/Cu as the photocatalyst. The photoreactor was an unbaffled dished bottom tank with a backswept impeller and four lamp tubes. The CFD equations were solved for light intensity, velocity, pressure, and concentration fields in time-dependent modes of the fluid regime. Our model was more complex than the previous studies in several ways: we modeled the system is 3D instead of 2D, allowed variation of light intensity and pressure throughout the photoreactor, and traced the change of key parameters over time during the initiation phase until the steady state was reached. The flow pattern was solved and visualized in the presence of mixer in vertical and horizontal cuts. Experimentally measured concentrations over time matched model predictions well but also indicated the need for yet more complex models incorporating more factors that affect reaction rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kumaresan T, Joshi JB (2006) Effect of impeller design on the flow pattern and mixing in stirred tanks. Chem Eng J 115:173–193. https://doi.org/10.1016/j.cej.2005.10.002

    Article  CAS  Google Scholar 

  2. Lamberto DJ, Alvarez MM, Muzzio FJ (1999) Experimental and computational investigation of the laminar flow structure in a stirred tank. Chem Eng Sci 54:919–942. https://doi.org/10.1016/S0009-2509(98)00275-9

    Article  CAS  Google Scholar 

  3. Hartmann H, Derksen JJ, van den Akker HEA (2006) Mixing times in a turbulent stirred tank by means of LES. AIChE J 52:3696–3706. https://doi.org/10.1002/aic.10997

    Article  CAS  Google Scholar 

  4. Aubin J, Fletcher DF, Xuereb C (2004) Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme. Exp Therm Fluid Sci 28:431–445. https://doi.org/10.1016/j.expthermflusci.2003.04.001

    Article  CAS  Google Scholar 

  5. Huang W, Li K (2013) CFD simulation of flows in stirred tank reactors through prediction of momentum source. In: Nuclear reactor thermal hydraulics and other applications. InTech, p 13

  6. Buwa V, Dewan A, Nassar AF, Durst F (2006) Fluid dynamics and mixing of single-phase flow in a stirred vessel with a grid disc impeller: experimental and numerical investigations. Chem Eng Sci 61:2815–2822. https://doi.org/10.1016/j.ces.2005.10.066

    Article  CAS  Google Scholar 

  7. Malayeri M, Lee CS, Haghighat F, Klimes L (2020) Modeling of gas-phase heterogeneous photocatalytic oxidation reactor in the presence of mass transfer limitation and axial dispersion. Chem Eng J 386:124013. https://doi.org/10.1016/j.cej.2020.124013

    Article  CAS  Google Scholar 

  8. Cai Y, Liu L, Tian H et al (2019) Adsorption and desorption performance and mechanism of tetracycline hydrochloride by activated carbon-based adsorbents derived from sugar cane bagasse activated with ZnCl2. Molecules 24:4534. https://doi.org/10.3390/molecules24244534

    Article  CAS  PubMed Central  Google Scholar 

  9. Jing X, Wang Y, Liu W et al (2014) Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chem Eng J 248:168–174. https://doi.org/10.1016/j.cej.2014.03.006

    Article  CAS  Google Scholar 

  10. Fu Y, Peng L, Zeng Q, Yang Y, Song H, Shao J, Liu S, Gu J (2015) high efficient removal of tetracycline from solution by degradation and flocculation with nanoscale zerovalent iron. Chem Eng J. https://doi.org/10.1016/j.cej.2015.02.070

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ahmadi M, Ramezani H, Jaafarzadeh N (2017) Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J Enviromental Manag 186:55–63. https://doi.org/10.1016/j.jenvman.2016.09.088

    Article  CAS  Google Scholar 

  12. Asgharian M, Mehdipourghazi M, Khoshandam B, Keramati N (2020) Experimental design and RSM modeling of tetracycline photocatalytic degradation using rGO/ZnO/Cu. Desalin Water Treat 195:177–185. https://doi.org/10.5004/dwt.2020.25878

    Article  CAS  Google Scholar 

  13. Dehghan A, Dehghani MH, Nabizadeh R et al (2018) Adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride from aqueous solutions using 3D hierarchical mesoporous BiOI: synthesis and characterization, process optimization, adsorption and degradation modeling. Chem Eng Res Des 129:217–230. https://doi.org/10.1016/j.cherd.2017.11.003

    Article  CAS  Google Scholar 

  14. Gao B, Chen W, Liu J et al (2018) Continuous removal of tetracycline in a photocatalytic membrane reactor (PMR) with ZnIn2S4 as adsorption and photocatalytic coating layer on PVDF membrane. J Photochem Photobiol A Chem 364:732–739. https://doi.org/10.1016/j.jphotochem.2018.07.008

    Article  CAS  Google Scholar 

  15. Khan MH, Bae H, Jung J (2010) Tetracycline degradation by ozonation in the aqueous phase: proposed degradation intermediates and pathway. J Hazard Mater 181:659–665. https://doi.org/10.1016/j.jhazmat.2010.05.063

    Article  CAS  PubMed  Google Scholar 

  16. Safari GH, Hoseini M, Seyedsalehi M et al (2015) Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution. Int J Environ Sci Technol 12:603–616. https://doi.org/10.1007/s13762-014-0706-9

    Article  CAS  Google Scholar 

  17. Tran Thi VH, Lee BK (2017) Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method. J Hazard Mater 324:329–339. https://doi.org/10.1016/j.jhazmat.2016.10.066

    Article  CAS  PubMed  Google Scholar 

  18. Ao X, Sun W, Li S et al (2019) Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: influencing factors, degradation pathways, and toxicity evaluation. Chem Eng J 361:1053–1062. https://doi.org/10.1016/j.cej.2018.12.133

    Article  CAS  Google Scholar 

  19. Wang H, Yao H, Pei J et al (2015) Photodegradation of tetracycline antibiotics in aqueous solution by UV/ZnO. Desalin Water Treat. https://doi.org/10.1080/19443994.2015.1103309

    Article  Google Scholar 

  20. Wang H, Yao H, Pei J et al (2016) Photodegradation of tetracycline antibiotics in aqueous solution by UV/ZnO. Desalin Water Treat 57:19981–19987. https://doi.org/10.1080/19443994.2015.1103309

    Article  CAS  Google Scholar 

  21. Mondaca A, Giraldo A, Pen G et al (2009) Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions. Catal Today 144:100–105. https://doi.org/10.1016/j.cattod.2008.12.031

    Article  CAS  Google Scholar 

  22. Liu H, Yang Y, Kang J et al (2012) Removal of tetracycline from water by Fe-Mn binary oxide. J Environ Sci 24:242–247. https://doi.org/10.1016/S1001-0742(11)60763-8

    Article  CAS  Google Scholar 

  23. Drogui RDP (2013) Tetracycline antibiotics in the environment: a review. Environ Chem Lett 11:209–227. https://doi.org/10.1007/s10311-013-0404-8

    Article  CAS  Google Scholar 

  24. Ván R, Kristina C (2015) ZnO/graphite composites and its antibacterial activity at different conditions. J Photochem Photobiol B Biol 151:256–263. https://doi.org/10.1016/j.jphotobiol.2015.08.017

    Article  CAS  Google Scholar 

  25. Mohammad A, Ahmad K, Qureshi A et al (2018) Zinc oxide-graphitic carbon nitride nanohybrid as an efficient electrochemical sensor and photocatalyst. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2018.07.086

    Article  Google Scholar 

  26. Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448. https://doi.org/10.1016/j.watres.2015.09.045

    Article  CAS  PubMed  Google Scholar 

  27. Janotti A, Van de Walle CG (2009) Fundamentals of zinc oxide as a semiconductor. Reports Prog Phys 72:126501. https://doi.org/10.1088/0034-4885/72/12/126501

    Article  CAS  Google Scholar 

  28. Das AK, Misra P, Ajimsha RS et al (2017) Electron interference effects and strong localization in Cu doped ZnO thin films. Mater Sci Semicond Process 68:275–278. https://doi.org/10.1016/j.mssp.2017.06.024

    Article  CAS  Google Scholar 

  29. Torres-Hernández JR, Ramírez-Morales E, Rojas-Blanco L et al (2015) Structural, optical and photocatalytic properties of ZnO nanoparticles modified with Cu. Mater Sci Semicond Process 37:87–92. https://doi.org/10.1016/j.mssp.2015.02.009

    Article  CAS  Google Scholar 

  30. Putri LK, Ong W-J, Chang WS, Chai S-P (2015) Heteroatom doped graphene in photocatalysis: a review. Appl Surf Sci 358:2–14. https://doi.org/10.1016/j.apsusc.2015.08.177

    Article  CAS  Google Scholar 

  31. Guinea F, Katsnelson MI, Geim AK (2010) Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nat Phys 6:30–33. https://doi.org/10.1038/nphys1420

    Article  CAS  Google Scholar 

  32. Kang W, Jimeng X, Xitao W (2016) The effects of ZnO morphology on photocatalytic efficiency of ZnO/RGO nanocomposites. Appl Surf Sci 360:270–275. https://doi.org/10.1016/j.apsusc.2015.10.190

    Article  CAS  Google Scholar 

  33. Pant HR, Park CH, Pokharel P et al (2013) ZnO micro-flowers assembled on reduced graphene sheets with high photocatalytic activity for removal of pollutants. Powder Technol 235:853–858. https://doi.org/10.1016/j.powtec.2012.11.050

    Article  CAS  Google Scholar 

  34. Ravichandran K, Chidhambaram N, Gobalakrishnan S (2016) Copper and Graphene activated ZnO nanopowders for enhanced photocatalytic and antibacterial activities. J Phys Chem Solids 93:82–90. https://doi.org/10.1016/j.jpcs.2016.02.013

    Article  CAS  Google Scholar 

  35. Asgharian M, Mehdipourghazi M, Khoshandam B, Keramati N (2019) Photocatalytic degradation of methylene blue with synthesized rGO/ZnO/Cu. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2019.01.037

    Article  Google Scholar 

  36. Casado C, Marugán J, Timmers R et al (2017) Comprehensive multiphysics modeling of photocatalytic processes by computational fluid dynamics based on intrinsic kinetic parameters determined in a differential photoreactor. Chem Eng J 310:368–380. https://doi.org/10.1016/j.cej.2016.07.081

    Article  CAS  Google Scholar 

  37. Ramos-Huerta LA, Valadés-Pelayo PJ, Llanos AG et al (2021) Development of a new methodology to determine suspended photocatalyst optical properties. Chem Eng J. https://doi.org/10.1016/j.cej.2020.127458

    Article  Google Scholar 

  38. Pakzad L, Ein-Mozaffari F, Upreti SR, Lohi A (2013) Evaluation of the mixing of non-newtonian biopolymer solutions in the reactors equipped with the coaxial mixers through tomography and CFD. Chem Eng J 215–216:279–296. https://doi.org/10.1016/j.cej.2012.10.060

    Article  CAS  Google Scholar 

  39. Foukrach M, Bouzit M, Ameur H, Kamla Y (2020) Effect of agitator’s types on the hydrodynamic flow in an agitated tank. Chinese J Mech Eng. https://doi.org/10.1186/s10033-020-00454-2

    Article  Google Scholar 

  40. Boyjoo Y, Ang M, Pareek V (2013) Light intensity distribution in multi-lamp photocatalytic reactors. Chem Eng Sci 93:11–21. https://doi.org/10.1016/j.ces.2012.12.045

    Article  CAS  Google Scholar 

  41. Zhu XD, Wang YJ, Sun RJ, Zhou DM (2013) Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere 92:925–932. https://doi.org/10.1016/j.chemosphere.2013.02.066

    Article  CAS  PubMed  Google Scholar 

  42. Lv C, Lan X, Wang L et al (2019) Rapidly and highly efficient degradation of tetracycline hydrochloride in wastewater by 3D IO-TiO2-CdS nanocomposite under visible light. Environ Technol. https://doi.org/10.1080/09593330.2019.1629183

    Article  PubMed  Google Scholar 

  43. Mahbubul IM (2019) Optical properties of nanofluid

  44. Ahmad SHA, Saidur R, Mahbubul IM, Al-Sulaiman FA (2017) Optical properties of various nanofluids used in solar collector: a review. Renew Sustain Energy Rev 73:1014–1030. https://doi.org/10.1016/j.rser.2017.01.173

    Article  CAS  Google Scholar 

  45. Hoseini SS, Najafi G, Ghobadian B, Akbarzadeh AH (2020) Impeller shape-optimization of stirred-tank reactor: CFD and fluid structure interaction analyses. Chem Eng J. https://doi.org/10.1016/j.cej.2020.127497

    Article  Google Scholar 

  46. Ramírez-Cruz J, Salinas-Vázquez M, Ascanio G et al (2020) Mixing dynamics in an uncovered unbaffled stirred tank using large-eddy simulations and a passive scalar transport equation. Chem Eng Sci. https://doi.org/10.1016/j.ces.2020.115658

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behnam Khoshandam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgharian, M., Khoshandam, B., Mehdipourghazi, M. et al. Photocatalytic degradation of tetracycline in a stirred tank: computational fluid dynamic modeling and data validation. Reac Kinet Mech Cat 134, 553–568 (2021). https://doi.org/10.1007/s11144-021-02062-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02062-0

Keywords

Navigation