Skip to main content
Log in

Senior High School Student Biology Learning in Interactive Teaching

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

This paper reports Grade 12 students’ biology learning during interactive teaching classes in 2001 in Taiwan. The researcher as teacher, working within an interpretive framework, set out to improve her senior high school student biology teaching and learning. An intervention based on a social constructivist view of learning was designed, implemented and evaluated. The findings of this study indicate that intervention students’ cognitive development was facilitated, their reasoning and social abilities were enhanced, and they enjoyed the lessons more. Their first term examination outcomes were comparable with those in the traditional teaching classes. This study, therefore, provides an example for how interactive teaching, based on a social constructivist view of learning, can be effectively used for teaching and learning biology in the senior high school in Taiwan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Barbosa, R., Jofili, Z., & Watts, D. M. (2004). Cooperating and constructing knowledge: case studies from chemistry and citizenship. International Journal of Science Education, 26(8), 935–979. doi:10.1080/0950069032000138842.

    Article  Google Scholar 

  • Bell, B., & Cowie, B. (2001). Formative assessment and science education. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Bernard, H. R. (2000). Social research methods: Qualitative and quantitative approaches. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Borko, H., Liston, D., & Whitcomb, J. A. (2007). Genres of empirical research in teacher education. Journal of Teacher Education, 58(1), 3–11. doi:10.1177/0022487106296220.

    Article  Google Scholar 

  • Brogan, B. R., & Brogan, W. A. (1995). The Socratic questioner: teaching and learning in the dialogical classroom. The Educational Forum, 59, 288–296. doi:10.1080/00131729509336404.

    Article  Google Scholar 

  • Brown, A. L. (1994). The advancement of learning. Educational Researcher, 23(8), 4–12.

    Google Scholar 

  • Brooks, J., & Brooks, M. (1993). In search of understanding: the case for constructivist classrooms. ASCD Alexandria, Virginia.

  • Brunkhorst, B. J. (1992). A study of student outcomes and teacher characteristics in exemplary middle and junior high science programs. Journal of Research in Science Teaching, 29(6), 571–584. doi:10.1002/tea.3660290606.

    Article  Google Scholar 

  • Cartier, J. L., & Stewart, J. (2000). Teaching the nature of inquiry: further developments in a high school genetics curriculum. Science and Education, 9, 247–267. doi:10.1023/A:1008779126718.

    Article  Google Scholar 

  • Cohen, L., Manion, L., & Morrison, K. (2000). Research methods in education (5th ed.). London: Routledge.

    Google Scholar 

  • Driver, R., Guesne, E., & Tiberghien, A. (1985). Some features of children’s ideas and their implications for teaching. In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children’s ideas in science. Milton Keynes: Open University Press.

    Google Scholar 

  • Duit, R., & Treagust, D. F. (1998). Learning science—from behaviourism towards social constructivism and beyond. In B. J. Fraser, & K. Tobin (Eds.), International handbook of science education. Dordrecht, Netherlands: Kluwer Academic.

    Google Scholar 

  • Gardiner, P. G., & Farragher, P. (1999). The quantity and quality of biology laboratory work in British Columbia high schools. School Science and Mathematics, 99(4), 197–204.

    Article  Google Scholar 

  • Haigh, M. (1998). Investigative practical work in year 12 biology programmes. Unpublished doctoral dissertation. Waikato University, Hamilton, New Zealand.

  • Hake, R. R. (1998). Interactive-engagement versus traditional methods: a six-thousand-student survey of mechanics test data for introductory Physics courses. American Journal of Physics, 66(1), 64–74. doi:10.1119/1.18809.

    Article  Google Scholar 

  • Hesen, K. T. (1996). Teachers as researchers. In J. Sikula, T. J. Buttery, & E. Guyton (Eds.), Handbook of research on teacher education(2nd ed.). New York: Simon & Schuster.

    Google Scholar 

  • Hodson, D., & Hodson, J. (1998). From constructivism to social constructivism: a Vygotskian perspective on teaching and learning science. The School Science Review, 79(289), 84–88.

    Google Scholar 

  • Howe, A. (1996). Development of science concepts within a Vygotskian framework. Science Education, 80(1), 35–51. doi:10.1002/(SICI)1098-237X(199601)80:1<35::AID-SCE3>3.0.CO;2-3.

    Article  Google Scholar 

  • Huang, I., Aldridge, J. M., & Fraser, B. (1998). A cross-national study of perceived classroom environments in Taiwan and Western Australia: combining quantitative and qualitative approaches. Chinese Journal of Science Education, 6(4), 343–362 In Chinese.

    Google Scholar 

  • Julian, G. M. (1995). Socratic dialogue—with how many? The Physics Teacher, 33(6), 338–339. doi:10.1119/1.2344233.

    Article  Google Scholar 

  • Leonard, W. H., & Chandler, P. M. (2003). Where is the inquiry in biology textbooks? The American Biology Teacher, 65(7), 485–487. doi:10.1662/0002-7685(2003)065[0485:WITIIB]2.0.CO;2.

    Article  Google Scholar 

  • Lin, S. H. (2000). Exploring the role and function of traditional assessment from the stance of multiple-assessment. Science Education Monthly, 231, 67–71 In Chinese.

    Google Scholar 

  • Lock, R. (1997). Is there life in science 2000? Journal of Biological Education, 31(2), 83–85.

    Google Scholar 

  • Lock, R. (1998). Advanced-level biology—is there a problem? The School Science Review, 80(290), 25–29.

    Google Scholar 

  • Lu, T. N. (2006). An exploration of senior high school student learning in biology in Taiwan. Unpublished doctoral dissertation. Waikato University, Hamilton, New Zealand.

  • Ministry of Education of ROC. (1996). Senior-high biology curriculum standards. Taipei, Taiwan: Senior-high Curriculum Standards.

    Google Scholar 

  • Nola, R. (1997). Constructivism in science and science education: a philosophical critique. Science and Education, 6(1–2), 55–83. doi:10.1023/A:1008670030605.

    Article  Google Scholar 

  • NRC (1996). National science education standards. Washington, D.C.: National Academy.

    Google Scholar 

  • Patton, M. Q. (2002). Qualitative evaluation and research methods (3rd ed.). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Prawat, R. S. (1989). Teaching for understanding: Three key attributes. Teaching and Teacher Education, 5(4), 315–328. doi:10.1016/0742-051X(89)90029-2.

    Article  Google Scholar 

  • Reiss, M. J. (2005). SNAB: A new advanced level biology course. Journal of Biological Education, 39(2), 56–57.

    Google Scholar 

  • Spillane, J. (1999). External reform initiative and teachers’ efforts to reconstruct their practice: The mediating role of teachers’ zones of enactment. Journal of Curriculum Studies, 31(2), 143–175. doi:10.1080/002202799183205.

    Article  Google Scholar 

  • Stamovlasis, D., Dimos, A., & Tsaparlis, G. (2006). A study of group interaction processes in learning lower secondary physics. Journal of Research in Science Teaching, 43(6), 556–576.

    Article  Google Scholar 

  • Yang, J. H. (1994). Critique of Taiwan’s science education in terms of the outcomes of international mathematics and science assessment for educational progress. The Scientific Monthly, 25(6), 410–425 In Chinese.

    Google Scholar 

  • Yang, L. L. (2002). Brief history of Eastern and Western science education development. Taipei: Wen–Chin Publication (In Chinese).

    Google Scholar 

  • Yang, J. H., & Fraser, B. (1998). A collaborative research on science classroom environments in Taiwan and Western Australia: framework, method and implication for Taiwan’s science education. Chinese Journal of Science Education, 6(4), 325–342 In Chinese.

    Google Scholar 

Download references

Acknowledgement

Thanks to the teachers and students participated in this study. Without their contributions, this research could not have been undertaken. Special thanks to the anonymous reviewers for their valuable advice in the revision of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tan-Ni Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, TN., Cowie, B. & Jones, A. Senior High School Student Biology Learning in Interactive Teaching. Res Sci Educ 40, 267–289 (2010). https://doi.org/10.1007/s11165-008-9107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-008-9107-8

Keywords

Navigation