Skip to main content
Log in

Optimized Design of Wiring Scheme for Conductive Layer in Bending Area of a Flexible OLED

  • Published:
Russian Physics Journal Aims and scope

In order to solve the problem of wiring breakage in the conductive layer caused by a fold in the bending area of a flexible organic light-emitting diode (FOLED) and improve the conductive layer in the bending area of a FOLED, the conductive layer wiring scheme in its bending area is optimized. First, the polymer substrate FOLED samples are prepared, and the bending area structure is formed by stacking the resin, pin, metal wires and other layers. An equivalent working condition of the bending process is analyzed, and the three-dimensional finite element modeling of the bending area of the FOLED is completed. According to the simulation analysis results of the FOLED bending area, it is proposed that the optimal design of Resin ply thickness is as follows: the limiting conditions of material damage in the conductive layer should be fully considered, and the material damage mechanism should be studied to ensure that the cumulative plastic strain of A-A and B-B positions is smaller while being free from damage; the optimal wiring scheme design for the conductive layer is the following: using the square of optimal stress distribution to reduce the fracture angle, the routing scheme of crossing route type > full filling type > internal opening type should be adopted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Huan, J. L. Xin, and B. C. Xing, IEEE. Trans. Electron. Devices., 48, 1 (2018).

    Google Scholar 

  2. A. A. Zhamaletdinov, E. P. Velikhov, and A. N. Shevtsov, Dokl. Earth. Sci., 474, 641 (2017).

    Article  ADS  Google Scholar 

  3. T. Kim, K. H. Lee, and J. Y. Lee, J. Mater ChemC., 72, 88 (2018).

    Google Scholar 

  4. W. Peng, J. Zhang, and D. Lei, Chem. Mater., 29, 112 (2017).

    Google Scholar 

  5. L. L. Ma, L. Yang, and H. C. Zong, Chemelectrochem, 4, 1443 (2017).

    Article  Google Scholar 

  6. R. R. Cao, S. Liu, and Q. Liu, IEEE. Electron. Dev. Lett., 38, 1371 (2018).

    Article  ADS  Google Scholar 

  7. M. Gruber, A. Müller, and V. Jovanov, IEEE J Photovoltaics, 39, 1 (2017).

    Google Scholar 

  8. H. Y. Liu, G. J. Liu, and R. C. Huang, IEEE. Sensors. J., 17, No.16, 5087 (2017).

    Article  ADS  Google Scholar 

  9. X. Jin, A. D. Sendek, and E. D. Cubuk, Acs. Nano., 11, 19 (2017).

    Article  Google Scholar 

  10. R. Yan, X. J. Ma, and Y. Z. Liang., J. China Acad Electron Inform Technol., 12, 7 (2017).

  11. L. Pan, H. C. Wang, and M. Y. Chu, J. Pow. Supply., 17, 140 (2019).

    Google Scholar 

  12. K. Xia, X. L. Fu, and Z. R. Li, Chin. J. Pow. Source., 43, 116 (2019).

    Google Scholar 

  13. J. J. Qu, Autom. Instrum., 15, 226 (2017).

    Google Scholar 

  14. R. N. Sa, J. Jilin Univ. (Sci)., 55, 180 (2017).

  15. Y. Y. Li, K. F. Liang, and Z. Y. Yuan, Comput. Simul., 34, 55-62 (2017).

    Google Scholar 

  16. T. S. Brown, S. Du, H. Eruslu, and F. Sayas, Appl. Math. Nonlinear Sci., 3, 55 (2018).

    Article  MathSciNet  Google Scholar 

  17. C. R. Fernández-Pousa, Appl. Math. Nonlinear Sci., 3, 23 (2018).

    Article  MathSciNet  Google Scholar 

  18. Z. Xiong, et al., Multimed Tools Appl., 78, No.22, 31035 (2019).

    Article  Google Scholar 

  19. F. Khellat, and M. B. Khormizi, Appl. Math. Nonlinear Sci., 3, 15 (2018).

    Article  MathSciNet  Google Scholar 

  20. G. Lakshminarayana, K. Vajravelu, G. Sucharitha, and S. Sreenadh, Appl. Math. Nonlinear Sci., 3, 41 (2018).

    Article  MathSciNet  Google Scholar 

  21. H. C. Bozduman, and E. Afacan, Appl. Math. Nonlinear Sci., 5, (1), 479 (2020).

    Article  MathSciNet  Google Scholar 

  22. N. Gao, H. Hou, J. H. and Wu, Int. J. Mod. Phys. B, 32, No. 20, (2018).

  23. N. Gao, H. Hou, Y. Zhang, et al., Mod. Phys. Lett. B, 32, No. 4 (2018).

  24. J. P. Ruiz-Fernandez, J. Benlloch, M. A. Lopez, et al., Appl. Math. Nonlinear Sci., 4, No. 1, 21 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Ma.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 74–84, March, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Gu, J. Optimized Design of Wiring Scheme for Conductive Layer in Bending Area of a Flexible OLED. Russ Phys J 64, 450–462 (2021). https://doi.org/10.1007/s11182-021-02349-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02349-8

Keywords

Navigation