Skip to main content
Log in

How small is the center of science? Short cross-disciplinary cycles in co-authorship graphs

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Cycles that cross two or more boundaries between disciplines in the co-authorship graph for all of science are used to set upper limits on the number of co-authored papers required to cross 15 disciplines or subdisciplines ranging from macroeconomics to neurology. The upper limits obtained range from one (discrete mathematics, macroeconomics and nuclear physics) to six (neuroscience). The 15 disciplines or subdisciplines examined form a “small world” with an average separation of only 2.0 co-authorship links. It is conjectured that the high-productivity, high average degree centers of all scientific disciplines form a small world, and therefore that the diameter of the co-authorship graph of all of science is only slightly larger than the average diameter of the co-authorship graphs of its subdisciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams, M. D., Kerlavage, A. R., Kelley, J., Gocayne, J., Fields, C., Fraser, C., et al. (1994). A model for high-throughput automated DNA sequencing and analysis core facilities. Nature, 368, 474–475.

    Article  Google Scholar 

  • Adams, M. D., Kerlavage, A. R., Fleischmann, R. D., et al., (85 co-authors) (1995). Initial assessent of human gene diversty and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature, 377(Suppl), 3–174.

  • Alon, N., Karp, R. M., Peleg, D., & West, D. (1995). A graph-theoretic game and its application to the k-server problem. SIAM Journal Computation, 24, 78–100.

    Article  MATH  MathSciNet  Google Scholar 

  • Alon, N., Asodi, V., Cantor, C., Kasif, S., & Rachlin, J. (2006). Multi-node graphs: A framework for multiplexed biological assays. Journal Computational Biology, 13, 1659–1672.

    Article  MathSciNet  Google Scholar 

  • Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A, 311, 590–614.

    Article  MATH  MathSciNet  Google Scholar 

  • Batagelj, V. & Mrvar, A. (2000). Some analyses of Erdős collaboration graph. Social Networks, 22, 173–186.

    Article  MathSciNet  Google Scholar 

  • Bienstock, D., Chung, F. R. K., Fredman, M. L., Schäffer, A. A., Shor, P. W., & Suri, S. (1991). A note on finding a strict saddlepoint. American Mathematical Monthly, 98, 418–419.

    Article  MATH  MathSciNet  Google Scholar 

  • Borgatti, S. P. & Everett, M. G. (2006). A graph-theoretic perspective on centrality. Social Networks, 28, 466–484.

    Article  Google Scholar 

  • Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37, 179–255.

    Article  Google Scholar 

  • Börner, K., Sanyal, S., & Vespignani, A. (2007). Network science. Annual Review of Information Science and Technology, 41, 537–607.

    Article  Google Scholar 

  • Branscom, E., Slezak, T., Pae, R., Galas, D., Carrano, A. V., & Waterman, M. (1990). Optimizing restriction fragment fingerprinting methods for ordering large genomic libraries. Genomics, 8, 351–366.

    Article  Google Scholar 

  • Burks, C., Engle, M. L., Forrest, S., Parsons, R. J., Soderlund, C. A., & Stolarz, P. E. (1994). Stochastic optimization tools for genome sequence assembly. In M. D. Adams, C. Fields, & J. C. Venter (Eds.), Automated DNA Sequencing and Analysis (pp. 249–259). New York: Academic Press.

    Google Scholar 

  • Callaway, D. S., Hopcroft, J. E., Kleinberg, J. M., Newman, M. E. J., & Strogatz, S. (2001). Are randomly grown graphs really random? Physical Review E, 64, 041902.

    Article  Google Scholar 

  • Callaway, D. S. & Perelson, A. S. (2002). HIV-1 infection and low steady state viral loads. Bulletin of Mathematical Biology, 64, 29–64.

    Article  Google Scholar 

  • Cho, S., Moody, T. D., Fernandino, F., Mumford, J. A., Poldrack, R. A., Cannon, T. D., et al. (2010). Common and dissociable prefrontal loci associated with component mechanisms of analogical reasoning. Cerebral Cortex, 20, 524–533.

    Article  Google Scholar 

  • Chowla, S. & Erdős, P. (1951). A theorem on the distribution of values of L-functions. Journal Indian Mathematical Society, 15, 11–18.

    MATH  Google Scholar 

  • Chowla, S. & Hawkins, D. (1962). Asymptotic expansion of some series involving the Reimann zeta function. Journal Indian Mathematical Society, 26, 115–124.

    MATH  MathSciNet  Google Scholar 

  • Chung, F. R. K., Liu, L., Dewey, T. G., & Galas, D. J. (2003). Duplication models for biological networks. Journal Computational Biology, 10, 677–687.

    Article  Google Scholar 

  • Collins, F. S. & Watson, J. D. (2003). Genetic discrimination: Time to act. Science, 302, 745.

    Article  Google Scholar 

  • Cox, G. N., Kusch, M., & Edgar, R. S. (1981). Cuticle of Caenorhabditis elegans: Its isolation and partial characterization. Journal Cell Biology, 90, 7–17.

    Article  Google Scholar 

  • Craddock, T. J. A., Tuszynski, J. A., Chopra, D., Casey, N., Goldstein, L. E., Hameroff, S. R., et al. (2012). The zinc dyshomeostasis hypothesis of Alzheimer’s disease. PLoS One, 7, e33552.

    Article  Google Scholar 

  • Crane, D. (1972). Invisible Colleges; Diffusion of Knowledge in Scientific Communities. Chicago: University of Chicago Press.

    Google Scholar 

  • Crick, F. R. C. & Koch, C. (1990). Towards a neurobiological theory of consciousness. Seminars in the Neurosciences, 2, 263–275.

    Article  Google Scholar 

  • De Castro, R. & Grossman, J. W. (1999). Famous trails to Paul Erdős. Mathematical Intelligencer, 21(3), 51–63.

    Article  MATH  MathSciNet  Google Scholar 

  • Diestel, R. (2010). Graph Theory (4th ed.). Berlin: Springer.

    Book  Google Scholar 

  • Dietrich, E. & Fields, C. (1996). The role of the frame problem in Fodor’s modularity thesis: A case study in rationalist cognitive science. In K. M. Ford & Z. Pylyshyn (Eds.), The Robot’s Dilemma Revisited (pp. 9–24). Norwood, NJ: Ablex.

    Google Scholar 

  • Edgar, R. S., Feynman, R. P., Klein, S., Lielausis, I., & Steinberg, C. M. (1962). Mapping experiments with r mutants of bacteriophage T4D. Genetics, 47(2), 179–186.

    Google Scholar 

  • Ehrenfeucht, A., Faber, V., & Kierstead, H. A. (1984). A new method of proving theorems on chromatic index. Discrete Mathematics, 52, 159–164.

    Article  MATH  MathSciNet  Google Scholar 

  • Epstein, R. H., Bolle, A., Steinberg, C. M., Kellenberger, E., Boy de la Tour, E., Chevalley, R., et al. (1963). Physiological studies of conditional lethal mutants of bacteriophage T4D. Cold Spring Harbor Symposia on Quantitative Biology, 28, 375–394.

    Article  Google Scholar 

  • Erdős, P., Faber, V., & Larson, J. (1981). Sets of natural numbers of positive density and cylindric set algebras of dimension 2. Algebra Universalis, 12, 81–92.

    Article  MathSciNet  Google Scholar 

  • Erdős, P. & Kleitman, D. J. (1968). On coloring graphs to maximize the proportion of multicolored k-edges. Journal Combinatorial Theory, 5, 164–169.

    Article  Google Scholar 

  • Erdős, P. & Odlyzko, A. M. (1979). On the density of odd integers of the form \((p - 1)2^{-n}\) and related questions. Journal Number Theory, 11, 257–263.

    Article  MathSciNet  Google Scholar 

  • Feynman, R. P. & Gell-Mann, M. (1958). Theory of the Fermi interaction. Physical Review, 109, 193–198.

    Article  MATH  MathSciNet  Google Scholar 

  • Feynman, R. P., Metropolis, N., & Teller, E. (1949). Equations of state of elements based on the generalized Fermi-Thomas theory. Physical Review, 75, 1561–1573.

    Article  MATH  Google Scholar 

  • Fields, C. A., Kraushaar, J. J., Ristinen, R. A., & Samuelson, L. E. (1978). High-spin states above 3.5 MeV in \(^{91}\)Nb. Nuclear Physics, 326, 55–64.

    Article  Google Scholar 

  • Fields, C., Coombs, M., & Hartley, R. (1988). MGR: An architecture for problem solving in unstructured task environments. In Z. Ras & L. Saitta (Eds.), Methodologies for Intelligent Systems, 3 (pp. 40–49). Amsterdam: Elsevier.

    Google Scholar 

  • Fields, C. & Soderlund, C. (1990). gm: A practical tool for automating DNA sequence analysis. Computer Applications in the Biosciences, 6, 263–270.

    Google Scholar 

  • Fields, C. (2014). Some effects of the Human Genome Project on the Erdős collaboration graph. Journal Humanistic Mathematics 4, 3–24.

  • Forrest, S., Javornik, B., Smith, R. E., & Perelson, A. S. (1993). Using genetic algorithms to explore pattern recognition in the immune system. Evolutionary Computation, 1, 191–211.

    Article  Google Scholar 

  • Frisch, O. R. & Wheeler, J. A. (2009). The discovery of fission. Physics Today, 20(11), 43–54.

    Article  Google Scholar 

  • Gell-Mann, M. & Hartle, J. B. (1993). Classical equations for quantum systems. Physical Review D, 47, 3345–3382.

    Article  MathSciNet  Google Scholar 

  • Gell-Mann, M. & Lloyd, S. (1996). Information measures, effective complexity, and total information. Complexity, 2, 44–52.

    Article  MATH  MathSciNet  Google Scholar 

  • Gentner, D. & Holyoak, K. J. (1997). Reasoning and learning by analogy: Introduction. American Psychologist, 52, 32–34.

    Article  Google Scholar 

  • Goh, W. C., Rosen, C., Sodroski, J., Ho, D. D., & Haseltine, W. A. (1986). Identification of a protein encoded by the trans activator gene \(tatIII\) of human T-cell lymphotropic retrovirus type III. Journal Virology, 59, 181–184.

    Google Scholar 

  • Goldhaber, M. & Teller, E. (1948). On nuclear dipole vibrations. Physical Review, 74, 1046–1049.

  • Griggs, J. R., Hanlon, P., Odlyzko, A. M., & Waterman, M. S. (1990). On the number of alignments of k sequences. Graphs and Combinatorics, 6, 133–146.

    Article  MATH  MathSciNet  Google Scholar 

  • Grossman, J. W. (2005). Patterns of research in mathematics. Notices of the AMS, 52(1), 35–41.

    MATH  MathSciNet  Google Scholar 

  • Guha, S., Hayden, P., Krovi, H., Lloyd, S., Lupo, C., Shapiro, J. H., et al. (2014). Quantum enigma machines and the locking capacity of a quantum channel. Physical Review X, 4, 011016.

    Article  Google Scholar 

  • Hameroff, S. & Penrose, R. (1996). Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness. Mathematics and Computers in Simulation, 40, 453–480.

    Article  Google Scholar 

  • Hartle, J. B. & Hawking, S. W. (1983). Wave function of the universe. Physical Review D, 28, 2960–2975.

    Article  MathSciNet  Google Scholar 

  • Hartley, R. T. & Barnden, J. A. (1997). Semantic networks: Visualizations of Knowledge. Trends in Cognitive Sciences, 1, 169–175.

    Article  Google Scholar 

  • Hayden, P., Leung, D., Shor, P. W., & Winter, A. (2004). Randomizing quantum states: Constructions and applications. Communications in Mathematical Physics, 250, 371–391.

    Article  MATH  MathSciNet  Google Scholar 

  • Hawking, S. W., & Penrose, R. (1970). The singularities of gravitational collapse and cosmology. Proceedings of the Royal Society of London A, 314, 529–548.

    Article  MATH  MathSciNet  Google Scholar 

  • Hawkins, D. & Simon, H. A. (1949). Note: Some conditions of macroeconomic stability. Econometrica, 17, 245–248.

    Article  Google Scholar 

  • Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., & Markowitz, M. (1995). Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature, 373, 123–126.

    Article  Google Scholar 

  • Hopcroft, J. E. & Karp, R. M. (1973). An \(n^{5/2} \) algorithm for maximum matchings in bipartite graphs. SIAM Journal of Computation, 2, 225–231.

    Article  MATH  MathSciNet  Google Scholar 

  • Jacobs, J. A. (2013). In Defense of Disciplines. Chicago: University of Illinois Press.

    Book  Google Scholar 

  • Jacobs, J. A. & Frickel, S. (2009). Interdisciplinarity: A critical assessment. Annual Review of Sociology, 35, 43–65.

    Article  Google Scholar 

  • Klavans, R. & Boyack, K. W. (2009). Toward a consensus map of science. Journal of the American Society for Information Science and Technology, 60, 455–476.

    Article  Google Scholar 

  • Kraushaar, J. J. & Goldhaber, M. (1953). Direction and polarization correlations of successive gamma-rays. Physical Review, 89, 1081–1089.

    Article  Google Scholar 

  • Kuhn, H. W. (2004). Introduction. In J. von Neumann & O. Morgenstern (Eds.), Theory of games and economic behavior, sixtieth anniversary. Princeton: Princeton University Press, pp. vii–xiv.

    Google Scholar 

  • Lambiotte, R. & Panzarasa, P. (2009). Communities, knowledge creation and information diffusion. Journal of Informetrics, 3(3), 180–190.

    Article  Google Scholar 

  • Lander, E. S. & Waterman, M. S. (1988). Genomic mapping by fingerprinting random clones: A mathematical analysis. Genomics, 2, 231–239.

    Article  Google Scholar 

  • Landherr, A., Friedl, B., & Heidemann, J. (2010). A critical review of centrality measures in complex networks. Business Information Systems Engineering, 6, 371–385.

    Article  Google Scholar 

  • Lehky, S. R., Sejnowski, T. J., & Desimone, R. (1992). Predicting responses of nonlinear neurons in monkey striate cortex to complex patterns. Journal of Neuroscience, 12, 3568–3581.

    Google Scholar 

  • Linden, D. E. J., Bittner, R. A., Muckli, L., Waltz, J. A., Kriegeskorte, N., Goebel, R., et al. (2003). Cortical capacity constraints for visual working memory: Dissociation of fMRI load effects in a fronto-parietal network. NeuroImage, 20, 1518–1530.

    Article  Google Scholar 

  • Luria, S. & Delbrück, M. (1943). Mutations of bacteria from virus sensitivity to virus resistance. Genetics, 28, 491–511.

    Google Scholar 

  • Mali, F., Kronegger, L., Doreian, P., & Ferligoj, A. (2012). Dynamic scientific co-authorship networks. In A. Scharnhorst, K. Börner, & P. van den Besselaar (Eds.), Models of Science Dynamics (pp. 195–232). Berlin: Springer.

    Chapter  Google Scholar 

  • Markman, A. B. & Gentner, D. (1993). Structural alignment during similarity comparisons. Cognitive Psychology, 25, 431–467.

    Article  Google Scholar 

  • Markman, A. B. & Dietrich, E. (2000). In defense of representation. Cognitive Psychology, 40, 138–171.

    Article  Google Scholar 

  • Martin-Gallardo, A., McCombie, W. R., Gocayne, J. D., et al., (17 co-authors) (1992). Automated DNA sequencing and analysis of 106 kilobases from human chromosome 19q13.3. Nature Genetics, 1, 34–39.

  • McCombie, W. R., Martin-Gallardo, A., Gocayne, J. D., et al., (21 co-authors) (1992). Expressed genes, Alu repeats and polymorphisms in cosmids sequenced from chromosome 4p16.3. Nature Genetics, 1, 348–353.

  • Meitner, L. & Delbrück, M. (1935). Der Aufbau Der Atomkerne: Natürliche und Künstliche Kernumwandlungen. (The Structure of Atomic Nuclei: Natural and Artificial Nuclear Transformations). Berlin: Springer.

  • Meitner, L. & Frisch, O. (1939). Disintegration of Uranium by neutrons: A new type of nuclear reaction. Nature, 143, 239–240.

    Article  MATH  Google Scholar 

  • Meitner, L. & Kösters, H. (1933). Über die Streuung kurzwelliger \(\gamma \)-Strahlen (On the scattering of short-wave \(\gamma \)-rays). Zeitschrift für Physik, 84(3–4), 137–144.

    Article  Google Scholar 

  • Moody, J. (2004). The structure of a social science collaboration network: Disciplinary cohesion from 1963 to 1999. American Sociological Review, 69, 213–238.

    Article  Google Scholar 

  • Moya-Anegón, F., Vargas-Quesada, B., Chinchilla-Rodríguez, Z., Correra-Álvarez, E., Munoz-Fernández, F. J., & Herrero-Solano, V. (2007). Visualizing the marrow of science. Journal of the American Society for Information Science and Technology, 58, 2167–2179.

    Article  Google Scholar 

  • Mount, S. M., Burks, C., Herts, G., Stormo, G. D., White, O., & Fields, C. (1992). Splicing signals in Drosophila: Intron size, information content, and consensus sequences. Nucleic Acids Research, 20, 4255–4262.

    Article  Google Scholar 

  • Murray, M. N., Hansma, H. G., Bezanilla, M., Sano, T., Ogletree, D. F., Kolbe, W., et al. (1993). Atomic force microscopy of biochemically tagged DNA. Proceedings of the National Academy of Sciences USA, 90, 3811–3814.

    Article  Google Scholar 

  • Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences USA, 98, 404–409.

    Article  MATH  Google Scholar 

  • Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences USA, 101, 5200–5205.

    Article  Google Scholar 

  • Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences USA, 103, 8577–8582.

    Article  Google Scholar 

  • Newman, M. E. J., Forrest, S., & Balthrop, J. (2002). Email networks and the spread of computer viruses. Physical Review E, 66, 035101.

    Article  Google Scholar 

  • Pachter, L., Batzoglou, S., Spitkovsky, V. I., Banks, E., Lander, E. S., Kleitman, D. J., et al. (1999). A dictionary-based approach for gene annotation. Journal of Computational Biology, 6, 419–430.

    Article  Google Scholar 

  • Porter, A. L. & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81, 719–745.

    Article  Google Scholar 

  • Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. Journal of the Association for Information Science and Technology, 61, 1871–1887.

    Article  Google Scholar 

  • Roberts, L., Davenport, R. J., Pennisi, E., & Marshall, E. (2001). A history of the Human Genome Project. Science, 291, 1195.

    Article  Google Scholar 

  • Rosen, D. R., Siddique, T., & Patterson, D., et al. (33 co-authors), (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362, 59–62.

  • Sejnowski, T. J., Koch, C., & Churchland, P. S. (1988). Computational neuroscience. Science, 241, 1299–1306.

    Article  Google Scholar 

  • Simon, H. A., Valdés-Pérez, R. E., & Sleeman, D. H. (1997). Scientific discovery and simplicity of method. Artificial Intelligence, 91, 177–181.

    Article  Google Scholar 

  • Sleeman, D. H. & Hendley, R. J. (1979). ACE: A system which analyses complex explanations. International Journal of Man-Machine Studies, 11, 125–144.

    Article  Google Scholar 

  • Smith, C. L., Lawrance, S. K., Gillespie, G. A., Cantor, C. R., Weissman, S. M., & Collins, F. S. (1987). Strategies for mapping and cloning macroregions of mammalian genomes. Methods in Enzymology, 151, 461–489.

    Article  Google Scholar 

  • Stormo, G. D., Schneider, T. D., Gold, L., & Ehrenfeucht, A. (1982). Use of the ‘Perceptron’ algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Research, 10, 2997–3011.

    Article  Google Scholar 

  • van Houten, J., van Vuren, H. G., Le Pair, C., & Dijkhuis, G. (1983). Migration of physicists to other academic disciplines: Situation in The Netherlands. Scientometrics, 5, 257–267.

    Article  Google Scholar 

  • Wallace, M. L., Larivière, V., & Gingras, Y. (2012). A small world of citations? The influence of collaboration networks on citation practices. PLoS One, 7, e33339.

    Article  Google Scholar 

  • Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F. S., de Santos, M., et al. (1999). A system for relational reasoning in human prefrontal cortex. Psychological Science, 10, 119–125.

    Article  Google Scholar 

  • Waterman, M., Uberbacher, E., Spengler, S., Smith, F. R., Slezak, T., Robbins, R., et al. (1994). Genome informatics I: Community databases. Journal of Computational Biology, 1, 173–190.

    Article  Google Scholar 

  • Watson, J. D. & Cook-Deegan, R. M. (1991). Origins of the Human Genome Project. FASEB Journal, 5, 8–11.

    Google Scholar 

  • Watson, J. D. & Crick, F. R. C. (1953). Molecular structure of nucleic acids. Nature, 171, 737–738.

    Article  Google Scholar 

  • Wheeler, J. A. & Feynman, R. P. (1945). Interaction with the absorber as the mechanism of radiation. Reviews of Modern Physics, 17(2–3), 157–181.

    Article  Google Scholar 

  • Wiberg, J. S., Dirksen, M. L., Epstein, R. H., Luria, S. E., & Buchanan, J. M. (1962). Early enzyme synthesis and its control in E. coli infected with some amber mutants of bacteriophage T4. Proceedings of the National Academy of Sciences USA, 48, 293–302.

    Article  Google Scholar 

  • Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., et al. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316, 1609–1612.

    Article  Google Scholar 

  • Zhang, L., Barnden, J. A., Hendley, R. J., & Wallington, A. M. (2006). Exploitation in affect detection in improvisational e-drama. Lecture Notes in Computer Science, 4133, 68–79.

    Article  Google Scholar 

Download references

Acknowledgments

Many thanks to two anonymous referees for their helpful questions and comments on earlier versions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Fields.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fields, C. How small is the center of science? Short cross-disciplinary cycles in co-authorship graphs. Scientometrics 102, 1287–1306 (2015). https://doi.org/10.1007/s11192-014-1468-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-014-1468-3

Keywords

Navigation