Skip to main content
Log in

Mapping the dynamics of research networks in ecology and evolution using co-citation analysis (1975–2014)

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

In this paper we used a co-citation network analysis to quantify and illustrate the dynamic patterns of research in ecology and evolution over 40 years (1975–2014). We addressed questions about the historical patterns of development of these two fields. Have ecology and evolution always formed a coherent body of literature? What dominant ideas have motivated research activity in these two fields? How long have these ideas attracted the attention of researchers? Contrary to what was expected, we did not observe any trend towards a stronger integration of ecology and evolution into one big cluster that would suggest the existence of a single community. Three main bodies of literature have stayed relatively stable over time: population/community ecology, evolutionary ecology, and population/quantitative genetics. Other fields have disappeared, emerged or mutated over time. Besides, research organization has shifted from a taxon-oriented structure to a concept-oriented one over the years, with researchers working on the same topics but on different taxa showing more interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altmann, J. (1974). Observational study of behavior: Sampling methods. Behaviour,49(3–4), 227–266.

    Google Scholar 

  • Andersson, M. (1982). Female choice selects for extreme tail length in a widowbird. Nature,299(5886), 818–820.

    Google Scholar 

  • Andersson, M. (1986). Evolution of condition-dependent sex ornaments and mating preferences: Sexual selection based on viability differences. Evolution,40(4), 804–816.

    Google Scholar 

  • Andersson, M. B. (1994). Sexual selection. Princeton: Princeton University Press.

    Google Scholar 

  • Araujo, M. B., & Guisan, A. (2006). Five (or so) challenges for species distribution modelling. Journal of Biogeography,33(10), 1677–1688.

    Google Scholar 

  • Avise, J. C. (1992). Molecular population structure and the biogeographic history of a regional fauna: A case history with lessons for conservation biology. Oikos,63(1), 62–76.

    Google Scholar 

  • Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., et al. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics,18, 489–522.

    Google Scholar 

  • Birkhead, T. R., & Møller, A. P. (1992). Sperm competition in birds: Evolutionary causes and consequences. Tim Birkhead: Academic Press.

    Google Scholar 

  • Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and experiments,10, P10008.

    MATH  Google Scholar 

  • Bradshaw, A. (1984). The importance of evolutionary ideas in ecology and vice versa. In Evolutionary Ecology (Ed.), Shorrocks (pp. 1–25). Oxford: Wiley.

    Google Scholar 

  • Brown, J. H. (1984). On the relationship between abundance and distribution of species. American Naturalist,124(2), 255–279.

    Google Scholar 

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology,85(7), 1771–1789.

    Google Scholar 

  • Brown, J. H., & Kodric-Brown, A. (1977). Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology,58(2), 445–449.

    Google Scholar 

  • Burley, N., & Willson, M. (1983). Mate choice in plants. Princeton: Princeton University Press.

    Google Scholar 

  • Carneiro, M. C., Nabout, J. C., & Bini, L. M. (2008). Trends in the scientific literature on phytoplankton. Limnology,9(2), 153–158.

    Google Scholar 

  • Carvalho, P., Diniz-Filho, J. A. F., & Bini, L. M. (2005). The impact of Felsenstein’s “Phylogenies and the comparative method” on evolutionary biology. Scientometrics,62(1), 53–66.

    Google Scholar 

  • Chapin, F. S., III. (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics,11, 233–260.

    Google Scholar 

  • Charlesworth, B., & Charlesworth, D. (1978). A model for the evolution of dioecy and gynodioecy. American Naturalist,112(988), 975–997.

    Google Scholar 

  • Charnov, E. L. (1976). Optimal foraging the marginal value theorem. Theoretical Population Biology,9(2), 129–136.

    MATH  Google Scholar 

  • Charnov, E. L., & Krebs, J. R. (1974). On clutch size and fitness. Ibis,116(2), 217–219.

    Google Scholar 

  • Cherven, K. (2013). Network graph analysis and visualization with Gephi. Birmingham: Packt Publishing.

    Google Scholar 

  • Clutton-Brock, T. H. (Ed.). (1988). Reproductive success: Studies of individual variation in contrasting breeding systems. Chicago: University of Chicago Press.

    Google Scholar 

  • Clutton-Brock, T. H. (1991). The evolution of parental care. Princeton: Princeton University Press.

    Google Scholar 

  • Clutton-Brock, T. H. (2002). Breeding together: Kin selection and mutualism in cooperative vertebrates. Science,296(5565), 69–72.

    Google Scholar 

  • Clutton-Brock, T. H., Guinness, F. E., & Albon, S. D. (1982). Red deer: Behavior and ecology of two sexes. Chicago: University of Chicago Press.

    Google Scholar 

  • Cody, M. L. (1974). Competition and the structure of bird communities. Princeton: Princeton University Press.

    Google Scholar 

  • Connell, J. H. (1961). The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology,42(4), 710–723.

    Google Scholar 

  • Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science,199(4335), 1302–1310.

    Google Scholar 

  • Connell, J. H., & Slatyer, R. O. (1977). Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist,111(982), 1119–1144.

    Google Scholar 

  • Courchamp, F., & Bradshaw, C. J. (2018). 100 articles every ecologist should read. Nature Ecology and Evolution,2(2), 395–401.

    Google Scholar 

  • Cuddington, K., & Beisner, B. (2005). Ecological paradigms lost: Routes of theory change. Amsterdam: Elsevier.

    Google Scholar 

  • Cummins, K. W. (1974). Structure and function of stream ecosystems. BioScience,24(11), 631–641.

    Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: Murray London.

    Google Scholar 

  • Darwin, C. (1871). Sexual selection and the descent of man. London: Murray London.

    Google Scholar 

  • Dingemanse, N. J., Kazem, A. J., Réale, D., & Wright, J. (2010). Behavioural reaction norms: animal personality meets individual plasticity. Trends in Ecology and Evolution,25(2), 81–89.

    Google Scholar 

  • Dobzhansky, T. (1973). Nothing in biology makes sense except in the light of evolution. American Biology Teacher,35(3), 125–129.

    Google Scholar 

  • Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology,7(1), 214.

    Google Scholar 

  • Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology Evolution and Systematics,40(1), 677–697.

    Google Scholar 

  • Emlen, S. T., & Oring, L. W. (1977). Ecology sexual selection and the evolution of mating systems. Science,197(4300), 215–223.

    Google Scholar 

  • Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics,1(1), 47–50.

    Google Scholar 

  • Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics,131(2), 479–491.

    Google Scholar 

  • Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution,17(6), 368–376.

    Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution,39(4), 783–791.

    Google Scholar 

  • Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Gaston, K. J. (2000). Global patterns in biodiversity. Nature,405(6783), 220–227.

    Google Scholar 

  • Gingras, Y. (2002). Les formes spécifiques de l’internationalité du champ scientifique. Actes de la Recherche en Sciences Sociales,141–142, 31–45.

    Google Scholar 

  • Gingras, Y. (2009). Revisiting the “quiet debut” of the double helix: a bibliometric and methodological note on the “impact” of scientific publications. Journal of the History of Biology,43(1), 159–181.

    Google Scholar 

  • Gingras, Y. (2010). Mapping the structure of the intellectual field using citation and co-citation analysis of correspondences. History of European Ideas,36(3), 330–339.

    Google Scholar 

  • Gordon, D. M. (2011). The fusion of behavioral ecology and ecology. Behavioral Ecology,22(2), 225–230.

    Google Scholar 

  • Goudet, J. (1995). FSTAT version 1.2: A computer program to calculate F-statistics. Journal of Heredity,86(6), 485–486.

    Google Scholar 

  • Grime, J. P. (1979). Plant strategies and vegetation processes. New York: Wiley Chichester.

    Google Scholar 

  • Gross, M. R. (1994). The evolution of behavioural ecology. Trends in Ecology and Evolution,9(10), 358–360.

    Google Scholar 

  • Grossetti, D. M., Eckert, D., Gingras, Y., Jegou, L., Lariviere, V., & Milard, B. (2014). Cities and the geographical deconcentration of scientific activity: A multilevel analysis of publications (1987–2007). Urban Studies,51(10), 2219–2234.

    Google Scholar 

  • Hamilton, W. D. (1964). The genetical evolution of social behaviour II. Journal of Theoretical Biology,7(1), 17–52.

    Google Scholar 

  • Hamilton, W. D. (1971). Geometry for the selfish herd. Journal of Theoretical Biology,31(2), 295–311.

    Google Scholar 

  • Hanski, I. (1994). A practical model of metapopulation dynamics. Journal of Animal Ecology,63(1), 151–162.

    Google Scholar 

  • Hanski, I., & Gilpin, M. (1991). Metapopulation dynamics: Brief history and conceptual domain. Biological Journal of the Linnean Society,42(1–2), 3–16.

    Google Scholar 

  • Hanski, I., Hansson, L., & Henttonen, H. (1991). Specialist predators, generalist predators, and the microtine rodent cycle. Journal of Animal Ecology,60(1), 353–367.

    Google Scholar 

  • Harper, J. L. (1977). Population biology of plants. London: Academic Press.

    Google Scholar 

  • Harper, J. L., Lovell, P. H., & Moore, K. G. (1970). The shapes and sizes of seeds. Annual Review of Ecology and Systematics,1(1), 327–356.

    Google Scholar 

  • Harper, J., & White, J. (1974). The demography of plants. Annual Review of Ecology Evolution and Systematics,5(1), 419–463.

    Google Scholar 

  • Harvey, P. H., & Pagel, M. D. (1991). The Comparative method in evolutionary biology. Oxford: Oxford University Press.

    Google Scholar 

  • Heinrich, B., & Raven, P. H. (1972). Energetics and pollination ecology. Science,176(4035), 597–602.

    Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology,25(15), 1965–1978.

    Google Scholar 

  • Hinde, R. A. (1976). Interactions relationships and social structure. Man,11(1), 1–17.

    MathSciNet  Google Scholar 

  • Holt, R. D. (1977). Predation, apparent competition, and the structure of prey communities. Theoretical Population Biology,12(2), 197–229.

    MathSciNet  Google Scholar 

  • Hubbell, S. P. (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology,19(1), 166–172.

    Google Scholar 

  • Hutchinson, G. E. (1959). Homage to Santa Rosalia or why are there so many kinds of animals? American Naturalist,93(870), 145–159.

    Google Scholar 

  • Janzen, D. H. (1970). Herbivores and the number of tree species in tropical forests. American Naturalist,104(940), 501–528.

    Google Scholar 

  • Janzen, D. H. (1971). Seed predation by animals. Annual Review of Ecology Evolution and Systematics,2(1), 465–492.

    Google Scholar 

  • Katz, J. S., & Hicks, D. (1997). How much is a collaboration worth? A calibrated bibliometric model. Scientometrics,40(3), 541–554.

    Google Scholar 

  • Krebs, C. J. (1972). Ecology: The experimental analysis of distribution and Abundance. New York: Harper and Row.

    Google Scholar 

  • Krebs, J. R. (1978). Optimal foraging: Decision rules for predators. In J. R. Krebs & N. B. Davis (Eds.), Behavioural ecology: An evolutionary approach (pp. 23–63). Sinauer: Sunderland.

    Google Scholar 

  • Krebs, J. R., Erichsen, J. T., Webber, M. I., & Charnov, E. L. (1977). Optimal prey selection in the great tit (Parus major). Animal Behaviour,25(1), 30–38.

    Google Scholar 

  • Lack, D. L. (1954). The natural regulation of animal numbers. Oxford: The Clarendon Press.

    Google Scholar 

  • Lack, D. L. (1968). Ecological adaptations for breeding in birds. London: Chapman & Hall.

    Google Scholar 

  • Lande, R. (1979). Quantitative genetic analysis of multivariate evolution applied to brain: Body size allometry. Evolution,33(1), 402–416.

    Google Scholar 

  • Lande, R., & Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolution,37(6), 1210–1226.

    Google Scholar 

  • Larivière, V., Ni, C., Gingras, Y., Cronin, B., & Sugimoto, C. R. (2013). Bibliometrics: Global gender disparities in science. Nature,504(7479), 211–213.

    Google Scholar 

  • Larivière, V., Vigola-Gagné, E., Villeneuve, C., Gélinas, P., & Gingras, Y. (2011). Sex differences in research funding productivity and impact: An analysis of Québec university professors. Scientometrics,87(3), 483–498.

    Google Scholar 

  • Legendre, P., & Legendre, L. (1998). Numerical ecology. London: Elsevier.

    MATH  Google Scholar 

  • Leimu, R., & Koricheva, J. (2005). Does scientific collaboration increase the impact of ecological articles? BioScience,55(5), 438–443.

    Google Scholar 

  • Levin, D. A. (1984). Inbreeding depression and proximity-dependent crossing success in Phlox drummondii. Evolution,38(1), 116–127.

    Google Scholar 

  • Levins, R. (1968). Evolution in changing environments: Some theoretical explorations. Princeton: Princeton University Press.

    Google Scholar 

  • Lewontin, R. C. (1974). The genetic basis of evolutionary change. New York: Columbia University Press.

    Google Scholar 

  • Lima, S. L., & Dill, L. M. (1990). Behavioral decisions made under the risk of predation: A review and prospectus. Canadian Journal of Zoology,68(4), 619–640.

    Google Scholar 

  • Lloyd, D. G. (1979). Some reproductive factors affecting the selection of self-fertilization in plants. American Naturalist,113(1), 67–79.

    MathSciNet  Google Scholar 

  • Logan, J. M., Bean, S. B., & Myers, A. E. (2017). Author contributions to ecological publications: What does it mean to be an author in modern ecological research? PLoS ONE,12(6), e0179956.

    Google Scholar 

  • Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., et al. (2001). Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science,294, 804–808.

    Google Scholar 

  • Losos, J. B., Jackman, T. R., Larson, A., de Queiroz, K., & Rodrı́guez-Schettino, L. (1998). Contingency and determinism in replicated adaptive radiations of island lizards. Science,279(5359), 2115–2118.

    Google Scholar 

  • MacArthur, R. H. (1972). Geographical ecology: Patterns in the distribution of species. Princeton: Princeton University Press.

    Google Scholar 

  • MacArthur, R. H., & Pianka, E. R. (1966). On optimal use of a patchy environment. American Naturalist,100(916), 603–609.

    Google Scholar 

  • MacArthur, R. H., & Wilson, E. O. (1963). An equilibrium theory of insular zoogeography. Evolution,17(4), 373–387.

    Google Scholar 

  • MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Princeton: Princeton University Press.

    Google Scholar 

  • May, R. M. (1974). Biological populations with nonoverlapping generations: Stable points stable cycles and chaos. Science,186(4164), 645–647.

    Google Scholar 

  • May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature,261(5560), 459–467.

    MATH  Google Scholar 

  • Maynard-Smith, J. (1974). The theory of games and the evolution of animal conflicts. Journal of Theoretical Biology,47(1), 209–221.

    MathSciNet  Google Scholar 

  • Maynard-Smith, J., & Parker, G. A. (1976). The logic of asymmetric contests. Animal Behaviour,24(1), 159–175.

    Google Scholar 

  • Maynard-Smith, J., & Price, G. R. (1973). The logic of animal conflict. Nature,246(5427), 15–18.

    MATH  Google Scholar 

  • Mayr, E. (1970). Populations, species, and evolution: an abridgment of animal species and evolution. Harvard: Harvard University Press.

    Google Scholar 

  • McCallen, E., Knott, J., Nunez-Mir, G., Taylor, B., Jo, I., & Fei, S. (2019). Trends in ecology: Shifts in ecological research themes over the past four decades. Frontiers in Ecology and Evolution,17(2), 109–116.

    Google Scholar 

  • Medina, A. M. (2018). Why do ecologists search for co-authorships? Patterns of co-authorship networks in ecology (1977–2016). Scientometrics,116(3), 1853–1865.

    Google Scholar 

  • Merton, R. K. (1988). The Matthew effect in science II. Cumulative advantage and the symbolism of intellectual property. Isis,79(4), 606–623.

    Google Scholar 

  • Møller, A. P. (1994). Sexual selection and the barn swallow. In L. A. Dugatkin (Ed.), Model systems in behavioral ecology: Integrating conceptual theoretical and empirical approaches (pp. 359–380). Princeton: Princeton University Press.

    Google Scholar 

  • Møller, A. P., & Pomiankowski, A. (1993). Why have birds got multiple sexual ornaments? Behavioral Ecology and Sociobiology,32(3), 167–176.

    Google Scholar 

  • Montgomerie, R. (2010). The end of behavioral ecology. Evolution,65(4), 1212–1214.

    Google Scholar 

  • Mooney, H. A. (1972). The carbon balance of plants. Annual Review of Ecology and Systematics,3(1), 315–346.

    Google Scholar 

  • Neff, M. W., & Corley, E. A. (2009). 35 years and 160,000 articles: A bibliometric exploration of the evolution of ecology. Scientometrics,80(3), 657–682.

    Google Scholar 

  • Nei, M. (1972). Genetic distance between populations. American Naturalist,106(9), 283–292.

    Google Scholar 

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics,89(3), 583–590.

    MathSciNet  Google Scholar 

  • Odum, E. (1992). Great ideas in ecology for the 1990s. BioScience,42(7), 542–545.

    Google Scholar 

  • Owens, I. P. F. (2006). Where is behavioural ecology going? Trends in Ecology and Evolution,21(7), 356–361.

    Google Scholar 

  • Paine, R. T. (1966). Food web complexity and species diversity. American Naturalist,100(910), 65–75.

    Google Scholar 

  • Paine, R. T. (1980). Food webs: Linkage interaction strength and community infrastructure. Journal of Animal Ecology,49(3), 667–685.

    Google Scholar 

  • Parker, G. A. (1970). Sperm competition and its evolutionary consequences in the insects. Biological Review,45(4), 525–567.

    Google Scholar 

  • Parker, G. A. (1979). Sexual selection and sexual conflict. In M. S. Blum & S. A. Blum (Eds.), Sexual selection and reproductive competition in insects (pp. 123–166). Cambridge: Academic Press.

    Google Scholar 

  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature,421(6918), 37–42.

    Google Scholar 

  • Pianka, E. R. (1970). On r-and K-selection. American Naturalist,104(9), 592–597.

    Google Scholar 

  • Pianka, E. R. (1973). The structure of lizard communities. Annual Review of Ecology and Systematics,4(1), 53–74.

    Google Scholar 

  • Posada, D., & Crandall, K. A. (1998). Modeltest: Testing the model of DNA substitution. Bioinformatics,14(9), 817–818.

    Google Scholar 

  • Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics,155(2), 945–959.

    Google Scholar 

  • Pyke, G. H., Pulliam, H. R., & Charnov, E. L. (1977). Optimal foraging: a selective review of theory and tests. Quarterly Review of Biology,52(2), 137–154.

    Google Scholar 

  • R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna: Austria. http://www.R-project.org/.

  • Raymond, M., & Rousset, F. (1995). An exact test for population differentiation. Evolution,49(6), 1280–1283.

    Google Scholar 

  • Ricklefs, R. E. (1969). An analysis of nesting mortality in birds. Washington: Smithsonian Contribution to Zoology (no. 9).

  • Ricklefs, R. E. (1987). Community diversity: Relative roles of local and regional processes. Science,235(4785), 167–171.

    Google Scholar 

  • Ricklefs, R. E. (2004). A comprehensive framework for global patterns in biodiversity. Ecology Letters,7(1), 1–15.

    Google Scholar 

  • Rosenzweig, M. L. (1995). Species diversity in space and time. Cambridge: Cambridge University Press.

    Google Scholar 

  • Roughgarden, J. (2009). Is there a general theory of community ecology? Biology and Philosophy,24(4), 521–529.

    Google Scholar 

  • Schluter, D. (2000). The ecology of adaptive radiation. Oxford: Oxford University Press.

    Google Scholar 

  • Schluter, D. (2001). Ecology and the origin of species. Trends in Ecology and Evolution,16(7), 372–380.

    Google Scholar 

  • Schoener, T. W. (1969). Models of optimal size for solitary predators. American Naturalist,103(931), 277–313.

    Google Scholar 

  • Schoener, T. W. (1971). Theory of feeding strategies. Annual Review of Ecology and Systematics,2(1), 369–404.

    Google Scholar 

  • Schoener, T. W. (1974). Resource partitioning in ecological communities. Science,185(4145), 27–39.

    Google Scholar 

  • Sih, A., Crowley, P., McPeek, M., Petranka, J., & Strohmeier, K. (1985). Predation competition and prey communities: A review of field experiments. Annual Review of Ecology and Systematics,16(1), 269–311.

    Google Scholar 

  • Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science,236(4803), 787–792.

    Google Scholar 

  • Slatkin, M. (1993). Isolation by distance in equilibrium and non-equilibrium populations. Evolution,47(1), 264–279.

    Google Scholar 

  • Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science,24(4), 265–269.

    MathSciNet  Google Scholar 

  • Sokal, R. R., & Rolhf, F. J. (1969). Biometry: the principles and practices in biological research. New York: W.H. Freeman.

    Google Scholar 

  • Stearns, S. C. (1976). Life-history tactics: A review of the ideas. Quarterly Review of Biology,51(1), 3–47.

    Google Scholar 

  • Stearns, S. C. (1977). The evolution of life history traits: A critique of the theory and a review of the data. Annual Review of Ecology and Systematics,8(1), 145–171.

    Google Scholar 

  • Stephens, D. W., & Krebs, J. R. (1986). Foraging theory. Princeton: Princeton University Press.

    Google Scholar 

  • Sutherland, W. J., et al. (2012). Identification of 100 fundamental ecological questions. Journal of Ecology,101(1), 58–67.

    Google Scholar 

  • Swofford, D. L., Olsen, G. J., Waddell, P. J., & Hillis, D. M. (1996). Phylogenetic inference. In D. M. Hillis, C. Moritz, & B. K. Sunderland (Eds.), Molecular systematics (pp. 407–514). Massachusetts: Sinauer.

    Google Scholar 

  • Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., et al. (2004). Extinction risk from climate change. Nature,427(6970), 145–148.

    Google Scholar 

  • Thornhill, R. (1983). Cryptic female choice and its implications in the scorpionfly Harpobittacus nigriceps. American Naturalist,122(6), 765–788.

    Google Scholar 

  • Thornhill, R., & Alcock, J. (1983). The evolution of insect mating systems. Harvard: Harvard University Press.

    Google Scholar 

  • Tilman, D. (1982). Resource competition and community structure. Princeton: Princeton University Press.

    Google Scholar 

  • Tilman, D. (1988). Plant strategies and the dynamics and structure of plant communities. Princeton: Princeton University Press.

    Google Scholar 

  • Tilman, D. (1994). Competition and biodiversity is spatially structured habitats. Ecology,75(1), 2–16.

    Google Scholar 

  • Tinbergen, N. (1963). On aims and methods of ethology. Ethology,20(4), 410–433.

    Google Scholar 

  • Traag, V., Waltmann, L., & Van Eck, N. J. (2018). From Louvain to Leiden: Guaranteeing well-connected communities. https://arxiv.org/abs/1810.08473.

  • Trivers, R. L. (1972). Parental investment and sexual selection. In R. L. Trivers (Ed.), Sexual selection and the descent of Man (pp. 135–179). New York: Wiley.

    Google Scholar 

  • Trivers, R. L. (1974). Parent-offspring conflict. American Zoologist,14(1), 249–264.

    Google Scholar 

  • Trivers, R. L., & Willard, D. E. (1973). Natural selection of parental ability to vary the sex ratio of offspring. Science,179(4068), 90–92.

    Google Scholar 

  • Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution,38(6), 1358–1370.

    Google Scholar 

  • Werner, E. E., Gilliam, J. F., Hall, D. J., & Mittelbach, G. G. (1983). An experimental test of the effects of predation risk on habitat use in fish. Ecology,64(6), 1540–1548.

    Google Scholar 

  • Westneat, D. F., Sherman, P. W., & Morton, M. L. (1990). The ecology and evolution of extra-pair copulations in birds. Current Ornithology,7, 331–369.

    Google Scholar 

  • Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon,21(2–3), 213–251.

    Google Scholar 

  • Wiens, J. J., & Donogue, M. J. (2004). Historical biogeography ecology and species richness. Trends in Ecology and Evolution,19(12), 639–644.

    Google Scholar 

  • Wiens, J. J., & Graham, C. H. (2005). Niche conservatism:integrating evolution ecology and conservation biology. Annual Review of Ecology Evolution and Systematics,36(1), 519–539.

    Google Scholar 

  • Williams, G. C. (1966). Natural selection the costs of reproduction and a refinement of Lack’s principle. American Naturalist,100(916), 687–690.

    Google Scholar 

  • Williams, G. C. (1975). Sex and evolution. Princeton: Princeton University Press.

    Google Scholar 

  • Williams, G. C. (1979). The question of adaptive sex ratio in outcrossed vertebrates. Proceedings of the Royal Society of London. Series B,205(1161), 567–580.

    Google Scholar 

  • Wilson, E. O. (1975). Sociobiology: The modern synthesis. Cambridge: Belknap.

    Google Scholar 

  • Wright, S. (1931). Evolution in Mendelian populations. Genetics,16(2), 97–159.

    Google Scholar 

  • Wright, S. (1949). The genetical structure of populations. Annales of Human Genetics,15(1), 323–354.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Beatrix Beisner and Pedro Peres-Neto for their constructive comments on a previous draft and Yimen Araya-Ajoye, Anne Charmantier, Niels Dingemanse, and Dave Westneat for discussions on the results. We are grateful to Carolyn Hall for editing the English Part of this work, done in part while D. Réale was a visiting scholar at the Centre d’Écologie Fonctionnelle et Évolutive CNRS Montpellier, France. D. Réale and P. O. Montglio are members of the Quebec Center for Biodiversity Science an excellence research center funded by the Fonds de Recherche Québec Nature Technologies. M. Khelfaoui and Y. Gingras are members of the Centre Interuniversitaire de Recherche sur la Science et la Technologie (CIRST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Gingras.

Ethics declarations

Conflict of interest

We declare that no competing interests exist.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2552 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Réale, D., Khelfaoui, M., Montiglio, PO. et al. Mapping the dynamics of research networks in ecology and evolution using co-citation analysis (1975–2014). Scientometrics 122, 1361–1385 (2020). https://doi.org/10.1007/s11192-019-03340-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-019-03340-4

Keywords

Navigation