Skip to main content
Log in

Prediction of the Stress State of Pond Ash Road Embankments

  • SOIL MECHANICS
  • Published:
Soil Mechanics and Foundation Engineering Aims and scope

Several full-scale in-tray stamp tests of the pond ash road embankment model were carried out under static and dynamic loading conditions. Based on the results, equations were proposed and verified for predicting the major principal stresses at different depths in the ash roadbed, depending on the degree of compaction, humidity, own weight of the technogenic soil, and type of the external load application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Vatin, D. V. Petrosov, A. I. Kalachev, and P. Lahtinen, “Use of ashes and ash-and-slad wastes in construction,” Ing.-Stroit. J., No. 4, 16-21 (2011).

  2. G. V. Dolgih, V. F. Ignatov, and V. A. Utkin, “Parameters of strength and deformability of ash and slag mixture of Ekibastuz coals,” IOP Conf. Series: Materials Science and Engineering, No. 687 (2019), doi:10.1088/1757-899X/687/4/044037.

  3. J. P. Martin, R. A. Collins, J. S. Browning, F. J. Biehl, “Properties and use of fly ashes for embankments,” Energy Eng., 116(2), 71-86 (1990).

    Article  Google Scholar 

  4. S. R. Singh and A. P. Panda, “Utilization of fly ash in geotechnical construction,” Proc. Indian Geotechnical Conf., Madras, 1, 547-550 (1996).

  5. B. Indraratna, P. Nutalaya, K. S. Koo, and N. Kuganenthira, “Engineering behaviour of a low carbon, pozzolanic fly ash and its potential as a construction fill,” Can. Geotech. J., 28(4), 542-555 (1991).

    Article  Google Scholar 

  6. Y. Muhardy, A. Marto, K. A. Kassim, M. A. Makhtar, F. L. Wei, and S. L. Lim, “Engineering characteristics of Tanjung Bin coal ash,” Electron. J. Geotech. Eng., No. 15, 1117-1129 (2010).

  7. N. S. Pandian and A. Ghosh, “Fly ash characterization with reference to geotechnical applications,” J. Indian Inst. Sci., 84, 189 - 216 (2004).

    Google Scholar 

  8. S. K. Pal and A. Ghosh, “Shear strength behavior of Indian flu ashes,” Indian Geotech. Conf. Geotechnics in Infrastructure Development (GEOTIDE), Vol. 1, 18-22 (2009).

  9. R. S. Jakka, M. Datta, and G. V. Ramana, “Shear behaviour of loose and compacted pond ash,” Geotech. Geol. Eng., 28(6), 763-778 (2010).

    Article  Google Scholar 

  10. D. Kumar, N. Kumar, A. Gupta, “Geotechnical properties of fly ash and bottom ash mixtures in different proportions,” Int. J. Sci. Res. (IJSR), 3(9), 1487-1494 (2014).

  11. S. Mohanty and N. R. Patra, “Geotechnical characterization of Panki and Panipat pond ash in India,” Geo-Energy, 6(1), 1-18 (2015), https://doi.org/10.1186/s40703-015-0013-4.

    Article  Google Scholar 

  12. S. K. Tiwari and A. Ghiya, “Strength behavior of compacted fly ash, bottom ash and their combinations,” Electron. J. Geotech. Eng., Vol. 18, 3085-3106 (2013).

    Google Scholar 

  13. B. Kim, M. Prezzi, and R. Salgado, “Geotechnical properties of fly and bottom ash mixtures for use in highway embankments,” Geotech. Geoenviron. Eng., 131(7), 914-924 (2005).

    Article  Google Scholar 

  14. B. Muhunthan, R. Taha, and J. Said, “Geotechnical engineering properties of incinerator ash mixes,” J. Air Waste Manag. Assoc., 54(8), 985-991 (2004).

    Article  Google Scholar 

  15. P.G.S. Gimhan, J.P.B. Disanayaka, M.C.M. Nasvi, “Geotechnical engineering properties of fly ash and bottom ash: use as civil engineering construction material,” J. Inst. Eng. Sri Lanka, 51(1), 49-57 (2018), https://doi.org/10.4038/engineer.v51i1.7287.

  16. A. T. Gruchot and T. Zydron, “Impact of a test method on the undrained shear strength of a chosen fly ash,” Ecol. Eng., 17(4), 41-49 (2016), https://doi.org/10.12911/22998993/63955.

  17. A. K. Sinha, V.G. Havanagi, S. Mathur, and U. K. Guruvittal, “Investigation and design of fly ash road embankments in India by CPT,” II Int. Symp. Cone Penetration Testing, Huntington Beach, CA, USA, vol. 2-3, Technical Papers, Session 3, Paper No. 3-49.

  18. R. Ossowski and K. Gwizdala, “Mechanical properties of a dike formed from a soil-ash composite,” Procedia Eng., 172, 816-822 (2017), https://doi.org/10.1016/j.proeng.2017.02.129.

    Article  Google Scholar 

  19. Z. Sikora and R. Ossowski, “Geotechnical aspects of dike construction using soil-ash composites,” Procedia Eng., 57, 1029-1035 (2013), https://doi.org/10.1016/j.proeng.2013.04.130.

    Article  Google Scholar 

  20. L. Balachowski and Z. Sikora, “Ìechanical properties of bottom ash-dredged material mixtures in laboratory tests,” Stud. Geophys. Mech., 35(3), 3-11 (2014).

    Google Scholar 

  21. J. C. Santamarina, “Soil behavior at the microscale: particle forces,” Proc. Symp. Soil Behavior and Soft Ground Construction, in honor of Charles C. Ladd, Pp. 1-32 (2001), https://doi.org/10.1061/40659(2003)2.

  22. R. P. Behringer, “Jamming in granular materials,” Compt. Rend. Phys., 16, No. 1, 10-25 (2015), https://doi.org/10.1016/j.crhy.2015.02.001.

    Article  Google Scholar 

  23. T. Takahashi, A. H. Clark, T. Majmudar, and L. Kondic, “Granular response to impact: topology of the force networks,” Phys. Rev. E, 97, No. 1, Pp. 012906 (2018).

  24. A. H. Clark, Granular Impact Dynamics: Grain Scale to Macroscale, PhD Thesis, Duke University.

  25. S. A. Matveev, N. N. Litvinov, R. Petrov, “Regularites of tension distribution in the interaeconomic highways soil base,” Vestn. Omsk. GAU, 28(4), 233-239 (2017).

    Google Scholar 

  26. A. Bianchini, “Frohlich theory-based approach for analysis of stress distribution in a layered system: case study,” Transport. Res. Rec., Vol. 2462, 61-67 (2014), https://doi.org/10.3141/2462-08.

  27. A. S. Aleksandrov, A. L. Kalinin, M. V. Tsyguleva, “Distribution capacity of sandy soils reinforced with geosynthetics,” Civ. Eng., 66(6), 35-48 (2016), https://doi.org/10.5862/MCE.66.4.

    Article  Google Scholar 

  28. C. R. Gonzales, “Implementation of a new flexible pavement design procedure for U.S. military airports,” IV LACCEI Int. Latin American and Caribbean Conf. Engineering and Technology, Mayaguez, Puerto Rico (2006).

  29. H.H.M. Beakawi, “A review on the angle of repose of granular materials,” Powder Technol., 330, 397-417 (2018).

    Article  Google Scholar 

  30. A. V. Moshenzhal, “Account of irregularity in the stress distribution along wood and concrete sleepers from a perspective of granular media mechanics,” Procedia Eng., 189, 637-642 (2017), https://doi.org/10.1016/j.proeng.2017.05.101.

    Article  Google Scholar 

  31. A. A. Lunev and V. V. Sirotyuk, “Stress distribution in ash and slag mixtures,” Civ. Eng., 86(2), 72-82 (2019), https://doi.org/10.18720/MCE.86.7.

  32. A. S. Aleksandrov, G. V. Dolgikh, and A. L. Kalinin, “Improvement of shear strength design of a road structure. Part 2. Modified models to calculate the principal and shear stresses,” Civ. Eng., 62(2), 51-68 (2016), https://doi.org/10.5862/MCE.62.6.

    Article  Google Scholar 

  33. D. M. Shapiro, “Analytical and numerical linear calculations of shallow foundations bases,” Vestn. PNIPU, No. 4, Pp. 5-18 (2015), https://doi.org/10.15593/2224-9826/2015.4.01.

  34. Y. E. Proshunin, “Calculation of stress field in immovable layer of loose material,” Min. Sci., 40 (5), 482-489 (2004), https://doi.org/10.1007/s10913-005-0033-0.

    Article  Google Scholar 

  35. A. Federico, G. Elia, and A. Murianni, “The at-rest earth pressure coefficient prediction using simple elasto-plastic constitutive models,” Comput. Geotech., 36, No. 1-2, 187-198 (2009).

    Article  Google Scholar 

  36. A. N. Badanin, A. K. Bugrov, and A.V. Krotov, “The determination of the first critical load on particulate medium of sandy loam foundation,” Ing.-Stroit. J., No. 9, 29-34 (2012).

  37. J. Lee, T. S.Yun, and D. Lee, “Assessment of K0 correlation to strength for granular materials,” Soils Found., 53(4), 584-595 (2013).

    Article  Google Scholar 

  38. V. V. Sirotyuk and A. A. Lunev, “Strength and deformation characteristics of ash and slag mixture,” Civ. Eng., 74(6), 3-16 (2017).

    Google Scholar 

  39. A. S. Aleksandrov, Improving the Calculation of Road Structures for Shear Resistance, P 1. State of issue, Omsk, SibADI (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lunev.

Additional information

Translated from Osnovaniya, Fundamenty i Mekhanika Gruntov, No. 1, pp. 2-7, January-February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunev, A.A., Sirotyuk, V.V. Prediction of the Stress State of Pond Ash Road Embankments. Soil Mech Found Eng 58, 1–9 (2021). https://doi.org/10.1007/s11204-021-09700-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11204-021-09700-8

Navigation