Skip to main content
Log in

Propagating Linear Waves in Convectively Unstable Stellar Models: A Perturbative Approach

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Linear time-domain simulations of acoustic oscillations are unstable in the stellar convection zone. To overcome this problem it is customary to compute the oscillations of a stabilized background stellar model. The stabilization affects the result, however. Here we propose to use a perturbative approach (running the simulation twice) to approximately recover the acoustic wave field while preserving seismic reciprocity. To test the method we considered a 1D standard solar model. We found that the mode frequencies of the (unstable) standard solar model are well approximated by the perturbative approach within 1 μHz for low-degree modes with frequencies near 3 mHz. We also show that the perturbative approach is appropriate for correcting rotational-frequency kernels. Finally, we comment that the method can be generalized to wave propagation in 3D magnetized stellar interiors because the magnetic fields have stabilizing effects on convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Aerts, C., Christensen-Dalsgaard, J., Kurtz, D.W.: 2010, Asteroseismology, Springer, Berlin, 237.

    Book  Google Scholar 

  • Braun, D.C., Birch, A.C., Rempel, M., Duvall, T.L.: 2012, Helioseismology of a realistic magnetoconvective sunspot simulation. Astrophys. J. 744, 77. doi: 10.1088/0004-637X/744/1/77 .

    Article  ADS  Google Scholar 

  • Cameron, R., Gizon, L., Daiffallah, K.: 2007, SLiM: A code for the simulation of wave propagation through an inhomogeneous, magnetised solar atmosphere. Astron. Nachr. 328, 313. doi: 10.1002/asna.200610736 .

    Article  ADS  MATH  Google Scholar 

  • Chaplin, W.J., Elsworth, Y., Isaak, G.R., Marchenkov, K.I., Miller, B.A., New, R., Pinter, B., Appourchaux, T.: 2002, Peak finding at low signal–to–noise ratio: Low-l solar acoustic eigenmodes at n≤9 from the analysis of BiSON data. Mon. Not. Roy. Astron. Soc. 336, 979. doi: 10.1046/j.1365-8711.2002.05834.x .

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J.: 2002, Helioseismology. Rev. Mod. Phys. 74, 1073. doi: 10.1103/RevModPhys.74.1073 .

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J.: 2008a, ADIPLS – The Aarhus adiabatic oscillation package. Astrophys. Space Sci. 316, 113. doi: 10.1007/s10509-007-9689-z .

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J.: 2008b, ASTEC – The Aarhus STellar evolution code. Astrophys. Space Sci. 316, 13.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Dappen, W., Ajukov, S.V., Anderson, E.R., Antia, H.M., Basu, S., Baturin, V.A., Berthomieu, G., Chaboyer, B., Chitre, S.M., Cox, A.N., Demarque, P., Donatowicz, J., Dziembowski, W.A., Gabriel, M., Gough, D.O., Guenther, D.B., Guzik, J.A., Harvey, J.W., Hill, F., Houdek, G., Iglesias, C.A., Kosovichev, A.G., Leibacher, J.W., Morel, P., Proffitt, C.R., Provost, J., Reiter, J., Rhodes, E.J. Jr., Rogers, F.J., Roxburgh, I.W., Thompson, M.J., Ulrich, R.K.: 1996, The current state of solar modeling. Science 272, 1286. doi: 10.1126/science.272.5266.1286 .

    Article  ADS  Google Scholar 

  • Dahlen, F.A., Tromp, J.: 1998, Theoretical Global Seismology, Princeton University Press, Princeton, 118.

    Google Scholar 

  • Gizon, L.: 2013, Seismology of the Sun. In: Gmati, N., Haddar, H. (eds.) Proc. 11th Internat. Conf. on Mathematical and Numerical Aspects of Waves, 23. www.lamsin.tn/waves13/proceedings.pdf .

    Google Scholar 

  • Gizon, L., Birch, A.C., Spruit, H.C.: 2010, Local helioseismology: Three-dimensional imaging of the solar interior. Annu. Rev. Astron. Astrophys. 48, 289. doi: 10.1146/annurev-astro-082708-101722 .

    Article  ADS  Google Scholar 

  • Gough, D.O., Tayler, R.J.: 1966, The influence of a magnetic field on Schwarzschild’s criterion for convective instability in an ideally conducting fluid. Mon. Not. Roy. Astron. Soc. 133, 85.

    ADS  Google Scholar 

  • Hanasoge, S.M., Duvall, T.L. Jr.: 2007, The solar acoustic simulator: Applications and results. Astron. Nachr. 328, 319. doi: 10.1002/asna.200610737 .

    Article  ADS  MATH  Google Scholar 

  • Hanasoge, S.M., Larsen, R.M., Duvall, T.L. Jr., De Rosa, M.L., Hurlburt, N.E., Schou, J., Roth, M., Christensen-Dalsgaard, J., Lele, S.K.: 2006, Computational acoustics in spherical geometry: Steps toward validating helioseismology. Astrophys. J. 648, 1268. doi: 10.1086/505927 .

    Article  ADS  Google Scholar 

  • Hanasoge, S.M., Birch, A., Gizon, L., Tromp, J.: 2011, The adjoint method applied to time-distance helioseismology. Astrophys. J. 738, 100. doi: 10.1088/0004-637X/738/1/100 .

    Article  ADS  Google Scholar 

  • Hansen, C.J., Cox, J.P., van Horn, H.M.: 1977, The effects of differential rotation on the splitting of nonradial modes of stellar oscillation. Astrophys. J. 217, 151. doi: 10.1086/155564 .

    Article  ADS  Google Scholar 

  • Hartlep, T., Zhao, J., Mansour, N.N., Kosovichev, A.G.: 2008, Validating time-distance far-side imaging of solar active regions through numerical simulations. Astrophys. J. 689, 1373. doi: 10.1086/592721 .

    Article  ADS  Google Scholar 

  • Khomenko, E., Collados, M.: 2006, Numerical modeling of magnetohydrodynamic wave propagation and refraction in sunspots. Astrophys. J. 653(1), 739. doi: 10.1086/507760 .

    Article  ADS  Google Scholar 

  • Lynden-Bell, D., Ostriker, J.P.: 1967, On the stability of differentially rotating bodies. Mon. Not. Roy. Astron. Soc. 136, 293.

    ADS  MATH  Google Scholar 

  • Monteiro, M.J.P.F.G.: 2009, Evolution and Seismic Tools for Stellar Astrophysics, Springer, Berlin.

    Book  Google Scholar 

  • Moreno-Insertis, F., Spruit, H.C.: 1989, Stability of sunspots to convective motions. I – Adiabatic instability. Astrophys. J. 342, 1158. doi: 10.1086/167673 .

    Article  ADS  Google Scholar 

  • Parchevsky, K.V., Kosovichev, A.G.: 2007, Three-dimensional numerical simulations of the acoustic wave field in the upper convection zone of the Sun. Astrophys. J. 666, 547. doi: 10.1086/520108 .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. doi: 10.1007/s11207-011-9834-2 .

    Article  ADS  Google Scholar 

  • Schunker, H., Cameron, R.H., Gizon, L., Moradi, H.: 2011, Constructing and characterising solar structure models for computational helioseismology. Solar Phys. 271, 1. doi: 10.1007/s11207-011-9790-x .

    Article  ADS  Google Scholar 

  • Schwarzschild, K.: 1906, On the equilibrium of the Sun’s atmosphere. Göttinger Nachr., 41.

  • Shelyag, S., Erdélyi, R., Thompson, M.J.: 2006, Forward modeling of acoustic wave propagation in the quiet solar subphotosphere. Astrophys. J. 651, 576. doi: 10.1086/507463 .

    Article  ADS  Google Scholar 

  • Tayler, R.J.: 1973, The adiabatic stability of stars containing magnetic fields – I. Toroidal fields. Mon. Not. Roy. Astron. Soc. 161, 365.

    ADS  Google Scholar 

  • Trampedach, R.: 2010, Convection in stellar models. Astrophys. Space Sci. 328, 213. doi: 10.1007/s10509-010-0329-7 .

    Article  ADS  Google Scholar 

  • Tromp, J., Tape, C., Liu, Q.: 2005, Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys. J. Int. 160, 195. doi: 10.1111/j.1365-246X.2004.02453.x .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge research funding by the Deutsche Forschungsgemeinschaft (DFG) under the grant SFB 963/1 project A18. We used data provided by M. Rempel at the National Center for Atmospheric Research (NCAR). Support for the production of the data was provided by the NASA Solar Dynamics Observatory (SDO) Science Center program through grant NNH09AK021 awarded to NCAR and contract NNH09CE41C awarded to NWRA. The National Center for Atmospheric Research is sponsored by the National Science Foundation. LG acknowledges support from EU FP7 Collaborative Project Exploitation of Space Data for Innovative Helio- and Asteroseismology (SPACEINN). We used data provided by BiSON, funded by the UK Science and Technology Facilities Council (STFC). We thank Robert Cameron for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Papini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papini, E., Gizon, L. & Birch, A.C. Propagating Linear Waves in Convectively Unstable Stellar Models: A Perturbative Approach. Sol Phys 289, 1919–1929 (2014). https://doi.org/10.1007/s11207-013-0457-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-013-0457-7

Keywords

Navigation