Skip to main content
Log in

September 2017 Space-Weather Events: A Study on Magnetic Reconnection and Geoeffectiveness

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

September 2017 was an extremely active space-weather period with multiple events leading to varying impacts on the Earth’s magnetosphere. The geoeffectiveness of a space-weather event largely depends on the magnetic reconnection between the southward interplanetary magnetic field and the day-side northward geomagnetic field. In this work, we estimate the reconnection rates during two intense (SYM-H peak \(\leq-100\) nT) and two moderate (−50 nT ≥ SYM-H \(> -100\) nT) geomagnetic storms, and a high-intensity long-duration continuous auroral electrojet (AE) activity (HILDCAA) event in order to assess the contribution of the reconnection to resultant geomagnetic effects. Strong reconnection rates led to intense geomagnetic storms, while moderate-intensity geomagnetic storms were associated with discrete and weaker reconnection events. Comparatively weak magnetic reconnection continuing for a long interval of time led to the HILDCAA event. On average, a significant correlation was observed between the reconnection rates and geomagnetic-activity indices. However, the relationships are found to be more complex on shorter time-scales, varying from event to event. The importance of a quantitative study of the reconnection process for the prediction of geomagnetic activity is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Akasofu, S.-I.: 1964, The development of the auroral substorm. Planet. Space Sci. 12, 273. DOI.

    Article  ADS  Google Scholar 

  • Attie, R., Kirk, M.S., Thompson, B.J., Muglach, K., Norton, A.A.: 2018, Precursors of magnetic flux emergence in the moat flows of active region AR12673. Space Weather 16, 1143. DOI.

    Article  ADS  Google Scholar 

  • Balogh, A., Bothmer, V., Crooker, N.U., Forsyth, R.J., Gloeckler, G., Hewish, A., Hilchenbach, M., Kallenbach, R., Klecker, B., Linker, J.A., Lucek, E., Mann, G., Marsch, E., Posner, A., Richardson, I.G., Schmidt, J.M., Scholer, M., Wang, Y.M., Wimmer-Schweingruber, R.F., Aellig, M.R., Bochsler, P., Hefti, S., Mikić, Z.: 1999, The solar origin of corotating interaction regions and their formation in the inner heliosphere. Space Sci. Rev. 89, 141. DOI.

    Article  ADS  Google Scholar 

  • Berger, T., Matthiä, D., Burmeister, S., Rios, R., Lee, K., Semones, E., Hassler, D.M., Stoffle, N., Zeitlin, C.: 2018, The solar particle event on 10 September 2017 as observed onboard the International Space Station (ISS). Space Weather 16, 1173. DOI.

    Article  ADS  Google Scholar 

  • Bruno, A., Christian, E.R., de Nolfo, G.A., Richardson, I.G., Ryan, J.M.: 2019, Spectral analysis of the September 2017 solar energetic particle events. Space Weather 17, 419. DOI.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Ness, N.F., Mariani, F., Bavassano, B., Villante, U., Rosenbauer, H., Schwenn, R., Harvey, J.: 1978, Magnetic fields and flows between 1 and 0.3 AU during the primary mission of Helios 1. J. Geophys. Res. 83, 5167. DOI.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. DOI.

    Article  ADS  Google Scholar 

  • Burton, R.K., McPherron, R.L., Russell, C.T.: 1975, An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 80, 4204. DOI.

    Article  ADS  Google Scholar 

  • Chamberlin, P.C., Woods, T.N., Didkovsky, L., Eparvier, F.G., Jones, A.R., Machol, J.L., Mason, J.P., Snow, M., Thiemann, E.M.B., Viereck, R.A., Woodraska, D.L.: 2018, Solar ultraviolet irradiance observations of the solar flares during the intense September 2017 storm period. Space Weather 16, 1470. DOI.

    Article  ADS  Google Scholar 

  • Chapman, S., Ferraro, V.C.A.: 1931, A new theory of magnetic storms. Terr. Magn. Atmos. Electr. 36, 77. DOI.

    Article  MATH  Google Scholar 

  • Chertok, I.M., Belov, A.V., Abunin, A.A.: 2018, Solar eruptions, forbush decreases, and geomagnetic disturbances from outstanding active region 12673. Space Weather 16, 1549. DOI.

    Article  ADS  Google Scholar 

  • Crooker, N.U., Feynman, J., Gosling, J.T.: 1977, On the high correlation between long-term averages of solar wind speed and geomagnetic activity. J. Geophys. Res. 82, 1933. DOI.

    Article  ADS  Google Scholar 

  • Davis, J.C.: 2002, Statistics and Data Analysis in Geology, Wiley, Hoboken. ISBN 9780471172758.

    Google Scholar 

  • Davis, T.N., Sugiura, M.: 1966, Auroral electrojet activity index ae and its universal time variations. J. Geophys. Res. 71, 785. DOI.

    Article  ADS  Google Scholar 

  • Dungey, J.W.: 1961, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47. DOI.

    Article  ADS  Google Scholar 

  • Echer, E., Gonzalez, W.D., Tsurutani, B.T.: 2008, Interplanetary conditions leading to superintense geomagnetic storms (Dst \(\leq -250\) nT) during solar cycle 23. Geophys. Res. Lett. 35, L06S03. DOI.

    Article  Google Scholar 

  • Finch, I.D., Lockwood, M.L., Rouillard, A.P.: 2008, Effects of solar wind magnetosphere coupling recorded at different geomagnetic latitudes: Separation of directly-driven and storage/release systems. Geophys. Res. Lett. 35, L21105. DOI.

    Article  ADS  Google Scholar 

  • Gjerloev, J.W.: 2009, A global ground-based magnetometer initiative. Eos Trans. AGU 90, 230. DOI.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: 1994, What is a geomagnetic storm? J. Geophys. Res. 99, 5771. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Tsurutani, B.T., Lakhina, G.S.: 2020, The complex space weather events of 2017 September. Astrophys. J. 899, 3. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Echer, E., Tsurutani, B.T., Gonzalez, W.D.: 2013, Solar cycle dependence of high-intensity long-duration continuous AE activity (HILDCAA) events, relativistic electron predictors? J. Geophys. Res. 118, 5626. DOI.

    Article  Google Scholar 

  • Hajra, R., Tsurutani, B.T., Echer, E., Gonzalez, W.D.: 2014, Relativistic electron acceleration during high-intensity, long-duration, continuous AE activity (HILDCAA) events: Solar cycle phase dependences. Geophys. Res. Lett. 41, 1876. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Tsurutani, B.T., Echer, E., Gonzalez, W.D., Gjerloev, J.W.: 2016, Supersubstorms (SML < -2500 nT): Magnetic storm and solar cycle dependences. J. Geophys. Res. 121, 7805. DOI.

    Article  Google Scholar 

  • Illing, R.M.E., Hundhausen, A.J.: 1986, Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection. J. Geophys. Res. 91, 10951. DOI.

    Article  ADS  Google Scholar 

  • Iyemori, T., Takeda, M., Nose, M., Odagi, Y., Toh, H.: 2010, Mid-latitude geomagnetic indices ASY and SYM for 2009 (provisional), internal report of data analysis center for geomagnetism and space magnetism. wdc.kugi.kyoto-u.ac.jp/aeasy/asy.pdf.

  • Jiggens, P., Clavie, C., Evans, H., O’Brien, T.P., Witasse, O., Mishev, A.L., Nieminen, P., Daly, E., Kalegaev, V., Vlasova, N., Borisov, S., Benck, S., Poivey, C., Cyamukungu, M., Mazur, J., Heynderickx, D., Sandberg, I., Berger, T., Usoskin, I.G., Paassilta, M., Vainio, R., Straube, U., Müller, D., Sánchez-Cano, B., Hassler, D., Praks, J., Niemelä, P., Leppinen, H., Punkkinen, A., Aminalragia-Giamini, S., Nagatsuma, T.: 2019, In situ data and effect correlation during September 2017 solar particle event. Space Weather 17, 99. DOI.

    Article  ADS  Google Scholar 

  • Kennel, C.F., Edmiston, J.P., Hada, T.: 1985, A Quarter Century of Collisionless Shock Research, Am. Geophys. Un., Washington, 1. ISBN 9781118664032. DOI.

    Book  Google Scholar 

  • Klein, L.W., Burlaga, L.F.: 1982, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 87, 613. DOI.

    Article  ADS  Google Scholar 

  • Lepri, S.T., Zurbuchen, T.H.: 2010, Direct observational evidence of filament material within interplanetary coronal mass ejections. Astrophys. J. 723, L22. DOI.

    Article  ADS  Google Scholar 

  • Matthiä, D., Meier, M.M., Berger, T.: 2018, The solar particle event on 10–13 September 2017: Spectral reconstruction and calculation of the radiation exposure in aviation and space. Space Weather 16, 977. DOI.

    Article  ADS  Google Scholar 

  • Meng, X., Tsurutani, B.T., Mannucci, A.J.: 2019, The solar and interplanetary causes of superstorms (minimum Dst \(\leq -250\) nT) during the space age. J. Geophys. Res. 124, 3926. DOI.

    Article  Google Scholar 

  • Milan, S.E., Gosling, J.S., Hubert, B.: 2012, Relationship between interplanetary parameters and the magnetopause reconnection rate quantified from observations of the expanding polar cap. J. Geophys. Res. 117, A03226. DOI.

    Article  ADS  Google Scholar 

  • Newell, P.T., Gjerloev, J.W.: 2011, Evaluation of supermag auroral electrojet indices as indicators of substorms and auroral power. J. Geophys. Res. 116, A12211. DOI.

    Article  ADS  Google Scholar 

  • Nykyri, K., Bengtson, M., Angelopoulos, V., Nishimura, Y., Wing, S.: 2019, Can enhanced flux loading by high-speed jets lead to a substorm? Multipoint detection of the Christmas day substorm onset at 08:17 UT, 2015. J. Geophys. Res. 124, 4314. DOI.

    Article  Google Scholar 

  • O’Brien, T.P., Mazur, J.E., Looper, M.D.: 2018, Solar energetic proton access to the magnetosphere during the 10–14 September 2017 particle event. Space Weather 16, 2022. DOI.

    Article  ADS  Google Scholar 

  • Ohtani, S.: 2001, Substorm trigger processes in the magnetotail: Recent observations and outstanding issues. Space Sci. Rev. 95, 347. DOI.

    Article  ADS  Google Scholar 

  • Perreault, P., Akasofu, S.-I.: 1978, A study of geomagnetic storms. Geophys. J. Roy. Astron. Soc. 54, 547. DOI.

    Article  ADS  Google Scholar 

  • Piersanti, M., Di Matteo, S., Carter, B.A., Currie, J., D’Angelo, G.: 2019, Geoelectric field evaluation during the September 2017 geomagnetic storm: MA.I.GIC. model. Space Weather 17, 1241. DOI.

    Article  ADS  Google Scholar 

  • Pizzo, V.J.: 1985, Interplanetary Shocks on the Large Scale: A Retrospective on the Last Decade’s Theoretical Efforts, Am. Geophys. Un., Washington, 51. ISBN 9781118664179. DOI.

    Book  Google Scholar 

  • Redmon, R.J., Seaton, D.B., Steenburgh, R., He, J., Rodriguez, J.V.: 2018, September 2017’s geoeffective space weather and impacts to Caribbean radio communications during hurricane response. Space Weather 16, 1190. DOI.

    Article  ADS  Google Scholar 

  • Richardson, I.G.: 2018, Solar wind stream interaction regions throughout the heliosphere. Liv. Rev. Solar Phys. 15, 1. DOI.

    Article  ADS  Google Scholar 

  • Schillings, A., Nilsson, H., Slapak, R., Wintoft, P., Yamauchi, M., Wik, M., Dandouras, I., Carr, C.M.: 2018, O+ escape during the extreme space weather event of 4–10 September 2017. Space Weather 16, 1363. DOI.

    Article  ADS  Google Scholar 

  • Scolini, C., Chané, E., Temmer, M., Kilpua, E.K.J., Dissauer, K., Veronig, A.M., Palmerio, E., Pomoell, J., Dumbović, M., Guo, J., Rodriguez, L., Poedts, S.: 2020, CME–CME interactions as sources of CME geoeffectiveness: The formation of the complex ejecta and intense geomagnetic storm in 2017 early September. Astrophys. J. Suppl. 247, 21. DOI.

    Article  ADS  Google Scholar 

  • Sheeley, N.R., Harvey, J.W.: 1981, Coronal holes, solar wind streams, and geomagnetic disturbances during 1978 and 1979. Solar Phys. 70, 237. DOI.

    Article  ADS  Google Scholar 

  • Shue, J.-H., Chao, J.-K.: 2013, The role of enhanced thermal pressure in the earthward motion of the Earth’s magnetopause. J. Geophys. Res. 118, 3017. DOI.

    Article  Google Scholar 

  • Smith, E.J., Wolfe, J.H.: 1976, Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11. Geophys. Res. Lett. 3, 137. DOI.

    Article  ADS  Google Scholar 

  • Student: 1908, Probable error of a correlation coefficient. Biometrika 6, 302.

    Article  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D.: 1987, The cause of high-intensity long-duration continuous AE activity (HILDCAAs): Interplanetary Alfvén wave trains. Planet. Space Sci. 35, 405. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D.: 1997, The Interplanetary Causes of Magnetic Storms: A Review, Am. Geophys. Un., Washington, 77. ISBN 9781118664612. DOI.

    Book  Google Scholar 

  • Tsurutani, B.T., Hajra, R.: 2021, The interplanetary and magnetospheric causes of geomagnetically induced currents (GICs) > 10 A in the Mäntsälä Finland pipeline: 1999 through 2019. J. Space Weather Space Clim. DOI.

    Article  Google Scholar 

  • Tsurutani, B.T., Lin, R.P.: 1985, Acceleration of >47 keV ions and >2 keV electrons by interplanetary shocks at 1 AU. J. Geophys. Res. 90, 1. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Meng, C.-I.: 1972, Interplanetary magnetic-field variations and substorm activity. J. Geophys. Res. 77, 2964. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Tang, F., Akasofu, S.I., Smith, E.J.: 1988, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979). J. Geophys. Res. 93, 8519. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Tang, F., Lee, Y.T.: 1992, Great magnetic storms. Geophys. Res. Lett. 19, 73. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Tang, F., Arballo, J.K., Okada, M.: 1995, Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res. 100, 21717. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Guarnieri, F.L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R., Soraas, F., Vasyliunas, V.: 2006, Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res. 111, A07S01. DOI.

    Article  Google Scholar 

  • Tsurutani, B.T., Hajra, R., Echer, E., Gjerloev, J.W.: 2015, Extremely intense (SML \(\leq -2500\) nT) substorms: Isolated events that are externally triggered? Ann. Geophys. 33, 519. DOI.

    Article  ADS  Google Scholar 

  • Werner, A.L.E., Yordanova, E., Dimmock, A.P., Temmer, M.: 2019, Modeling the multiple CME interaction event on 6–9 September 2017 with WSA-ENLIL+Cone. Space Weather 17, 357. DOI.

    Article  ADS  Google Scholar 

  • Yan, X.L., Wang, J.C., Pan, G.M., Kong, D.F., Xue, Z.K., Yang, L.H., Li, Q.L., Feng, X.S.: 2018, Successive X-class flares and coronal mass ejections driven by shearing motion and sunspot rotation in active region NOAA 12673. Astrophys. J. 856, 79. DOI.

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (Dst \(\leq -100\) nT) during 1996–2005. J. Geophys. Res. 112, A10102. DOI.

    Article  ADS  Google Scholar 

  • Zou, P., Jiang, C., Feng, X., Zuo, P., Wang, Y., Wei, F.: 2019, A two-step magnetic reconnection in a confined X-class flare in solar active region 12673. Astrophys. J. 870, 97. DOI.

    Article  ADS  Google Scholar 

  • Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work is funded by the Science and Engineering Research Board (SERB), a statutory body of the Department of Science and Technology (DST), Government of India through Ramanujan Fellowship. The solar-wind plasma and IMF data used in this work are obtained from the OMNI website (omniweb.gsfc.nasa.gov/). The geomagnetic SYM-H indices are obtained from the World Data Center for Geomagnetism, Kyoto, Japan (wdc.kugi.kyoto-u.ac.jp/), and the auroral indices, SME and SML, are taken from the SuperMAG network (supermag.jhuapl.edu/). I would like to thank Bruce T. Tsurutani for helpful scientific discussions. I also thank the reviewer for extremely valuable suggestions, which substantially improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajkumar Hajra.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author declares that he has no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajra, R. September 2017 Space-Weather Events: A Study on Magnetic Reconnection and Geoeffectiveness. Sol Phys 296, 50 (2021). https://doi.org/10.1007/s11207-021-01803-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01803-7

Keywords

Navigation