Skip to main content
Log in

In-flight Calibration and Data Reduction for the WISPR Instrument On Board the PSP Mission

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present the calibration status and data reduction methodology for the Wide Field Imager for Solar Probe (WISPR) on board the Parker Solar Probe (PSP) mission. In particular, we describe the process for converting a raw image, measured in digital numbers (DN), to a calibrated image, measured in mean solar brightness (MSB). We also discuss details of the on board image processing including bias removal, the linearity of the electronics, pointing, geometric distortion, and photometric calibration using stellar measurements, and the characterization of vignetting and other instrumental artifacts. The analysis presented here is based on data from the first four WISPR orbits. As the PSP perihelia get progressively closer to the Sun and the WISPR concept of operation evolves to deal with the brighter scene, the calibration will likely need to be updated. Aging of the optics and the possibility of detector degradation may also occur. Hence, we consider the WISPR calibration as work in progress with updates reported as necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

Notes

  1. See WISPR Website for a description of all the keywords in the WISPR FITS header.

  2. Zemax is an optical modeling software.

  3. SPICE is an observation geometry system for space science missions.

References

  • Battams, K., Knight, M.M., Kelley, M.S.P., Gallagher, B.M., Howard, R.A., Stenborg, G.: 2020, Parker solar probe observations of a dust trail in the orbit of (3200) Phaethon. Astrophys. J. Suppl. 246(2), 64. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bewsher, D., Brown, D.S., Eyles, C.J.: 2012, Long-term evolution of the photometric calibration of the STEREO heliospheric imagers: I. HI-1. Solar Phys. 276(1-2), 491. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bohlin, J.D., Koomen, M.J., Tousey, R.: 1971, Rocket-coronagraph photometry of the 7 March, 1970 corona from 3 to 8. 5 rs (papers presented at the proceedings of the international symposium on the 1970 solar eclipse, held in Seattle, U. S. A. , 18-21 June, 1971). Solar Phys. 21(2), 408. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brown, D.S., Bewsher, D., Eyles, C.J.: 2009, Calibrating the pointing and optical parameters of the STEREO heliospheric imagers. Solar Phys. 254(1), 185. DOI. ADS.

    Article  ADS  Google Scholar 

  • Calabretta, M.R., Greisen, E.W.: 2002, Representations of celestial coordinates in FITS. Astron. Astrophys. 395, 1077. DOI. ADS.

    Article  ADS  Google Scholar 

  • Colaninno, R.C., Howard, R.A.: 2015, Update of the photometric calibration of the LASCO-C2 coronagraph using stars. Solar Phys. 290(3), 997. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fox, N.J., Velli, M.C., Bale, S.D., Decker, R., Driesman, A., Howard, R.A., Kasper, J.C., Kinnison, J., Kusterer, M., Lario, D.: 2016, The Solar Probe Plus mission: humanity’s first visit to our star. Space Sci. Rev. 204(1-4), 7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182(2), 497. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gardès, B., Lamy, P., Llebaria, A.: 2013, Photometric calibration of the LASCO-C2 coronagraph over 14 years (1996 – 2009). Solar Phys. 283(2), 667. DOI. ADS.

    Article  ADS  Google Scholar 

  • Halain, J.-P., Eyles, C.J., Mazzoli, A., Bewsher, D., Davies, J.A., Mazy, E., Rochus, P., Defise, J.M., Davis, C.J., Harrison, R.A., Crothers, S.R., Brown, D.S., Korendyke, C., Moses, J.D., Socker, D.G., Howard, R.A., Newmark, J.S.: 2011, Straylight-rejection performance of the STEREO HI instruments. Solar Phys. 271(1-2), 197. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hess, P., Rouillard, A.P., Kouloumvakos, A., Liewer, P.C., Zhang, J., Dhakal, S., Stenborg, G., Colaninno, R.C., Howard, R.A.: 2020, WISPR imaging of a pristine CME. Astrophys. J. Suppl. 246(2), 25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, T.A., DeForest, C.E.: 2012, The Thomson surface. I. Reality and myth. Astrophys. J. 752, 130. DOI.

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136(1-4), 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.A., Vourlidas, A., Bothmer, V., Colaninno, R.C., DeForest, C.E., Gallagher, B., Hall, J.R., Hess, P., Higginson, A.K., Korendyke, C.M., Kouloumvakos, A., Lamy, P.L., Liewer, P.C., Linker, J., Linton, M., Penteado, P., Plunkett, S.P., Poirier, N., Raouafi, N.E., Rich, N., Rochus, P., Rouillard, A.P., Socker, D.G., Stenborg, G., Thernisien, A.F., Viall, N.M.: 2019, Near-Sun observations of an F-corona decrease and K-corona fine structure. Nature 576(7786), 232. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.A., Vourlidas, A., Colaninno, R.C., Korendyke, C.M., Plunkett, S.P., Carter, M.T., Wang, D., Rich, N., Lynch, S., Thurn, A., Socker, D.G., Thernisien, A.F., Chua, D., et al.: 2020, The solar orbiter heliospheric imager (SoloHI). Astron. Astrophys.. DOI.

    Article  Google Scholar 

  • Janesick, J.R., Elliott, T., Andrews, J., Tower, J., Pinter, J.: 2013, Fundamental performance differences of CMOS and CCD imagers: part V. In: Widenhorn, R., Dupret, A. (eds.) Sensors, Cameras, and Systems for Industrial and Scientific Applications XIV 8659, SPIE, Bellingham, 1. International Society for Optics and Photonics. DOI.

    Chapter  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136(1-4), 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Korendyke, C.M., Vourlidas, A., Plunkett, S.P., Howard, R.A., Wang, D., Marshall, C.J., Waczynski, A., Janesick, J.J., Elliott, T., Tun, S., Tower, J., Grygon, M., Keller, D., Clifford, G.E.: 2013, Development and test of an active pixel sensor detector for heliospheric imager on solar orbiter and solar probe plus. In: Proceedings of the SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 8862, 88620J. DOI. ADS.

    Chapter  Google Scholar 

  • Koutchmy, S., Lamy, P.L.: 1985, In: Giese, R.H., Lamy, P. (eds.) The F-Corona and the Circum-Solar Dust Evidences and Properties, 63. DOI. ADS.

    Chapter  Google Scholar 

  • Morrill, J.S., Korendyke, C.M., Brueckner, G.E., Giovane, F., Howard, R.A., Koomen, M., Moses, D., Plunkett, S.P., Vourlidas, A., Esfandiari, E., Rich, N., Wang, D., Thernisien, A.F., Lamy, P., Llebaria, A., Biesecker, D., Michels, D., Gong, Q., Andrews, M.: 2006, Calibration of the Soho/Lasco C3 White Light Coronagraph. Solar Phys. 233(2), 331. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pickles, A.J.: 1997, VizieR Online Data Catalog: Spectrophotometric Atlas of Standard Stellar Spectra (Pickles 1985). VizieR Online Data Catalog, VII/102. ADS.

  • Poirier, N., Kouloumvakos, A., Rouillard, A.P., Pinto, R.F., Vourlidas, A., Stenborg, G., Valette, E., Howard, R.A., Hess, P., Thernisien, A., Rich, N., Griton, L., Indurain, M., Raouafi, N.-E., Lavarra, M., Réville, V.: 2020, Detailed imaging of coronal rays with the parker solar probe. Astrophys. J. Suppl. 246(2), 60. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rouillard, A.P., Kouloumvakos, A., Vourlidas, A., Kasper, J., Bale, S., Raouafi, N.-E., Lavraud, B., Howard, R.A., Stenborg, G., Stevens, M., Poirier, N., Davies, J.A., Hess, P., Higginson, A.K., Lavarra, M., Viall, N.M., Korreck, K., Pinto, R.F., Griton, L., Réville, V., Louarn, P., Wu, Y., Dalmasse, K., Génot, V., Case, A.W., Whittlesey, P., Larson, D., Halekas, J.S., Livi, R., Goetz, K., Harvey, P.R., MacDowall, R.J., Malaspina, D., Pulupa, M., Bonnell, J., de Witt, T.D., Penou, E.: 2020, Relating streamer flows to density and magnetic structures at the parker solar probe. Astrophys. J. Suppl. 246(2), 37. DOI. ADS.

    Article  ADS  Google Scholar 

  • Stenborg, G., Howard, R.A.: 2017, A heuristic approach to remove the background intensity on white-light solar images. I. STEREO/HI-1 heliospheric images. Astrophys. J. 839, 68. DOI. ADS.

    Article  ADS  Google Scholar 

  • Stenborg, G., Howard, R.A., Stauffer, J.R.: 2018, Characterization of the white-light brightness of the F-corona between \(5^{\circ}\) and \(24{^{\circ}}\) elongation. Astrophys. J. 862(2), 168. DOI. ADS.

    Article  ADS  Google Scholar 

  • Stenborg, G., Howard, R.A., Hess, P., Gallagher, B.: 2020, PSP/WISPR observations of dust density depletion near the Sun I. Remote observations to 8 rs from an observer between 0.13-0.35 AU. Astron. Astrophys. 862(2), 168. DOI. ADS.

    Article  Google Scholar 

  • Stetson, P.B.: 1987, DAOPHOT: a computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pac. 99, 191. DOI. ADS.

    Article  ADS  Google Scholar 

  • Szalay, J.R., Pokorný, P., Bale, S.D., Christian, E.R., Goetz, K., Goodrich, K., Hill, M.E., Kuchner, M., Larsen, R., Malaspina, D., McComas, D.J., Mitchell, D., Page, B., Schwadron, N.: 2020, The near-sun dust environment: initial observations from parker solar probe. Astrophys. J. Suppl. 246(2), 27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thernisien, A.F., Morrill, J.S., Howard, R.A., Wang, D.: 2006, Photometric calibration of the lasco-C3 coronagraph using stars. Solar Phys. 233(1), 155. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thompson, W.T.: 2006, Coordinate systems for solar image data. Astron. Astrophys. 449(2), 791. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vourlidas, A., Howard, R.A., Plunkett, S.P., Korendyke, C.M., Thernisien, A.F.R., Wang, D., Rich, N., Carter, M.T., Chua, D.H., Socker, D.G.: 2016, The wide-field imager for solar probe plus (WISPR). Space Sci. Rev. 204(1-4), 83. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wenger, M., Ochsenbein, F., Egret, D., Dubois, P., Bonnarel, F., Borde, S., Genova, F., Jasniewicz, G., Laloë, S., Lesteven, S., Monier, R.: 2000, The SIMBAD astronomical database. The CDS reference database for astronomical objects. Astron. Astrophys. Suppl. Ser. 143, 9. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wood, B.E., Hess, P., Howard, R.A., Stenborg, G., Wang, Y.-M.: 2020, Morphological reconstruction of a small transient observed by parker solar probe on 2018 November 5. Astrophys. J. Suppl. 246(2), 28. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for many helpful suggestions to improve this article. Parker Solar Probe was designed, built, and is now operated by the Johns Hopkins Applied Physics Laboratory as part of NASA’s Living with a Star (LWS) program (contract NNN06AA01C). This work was supported by the NASA Parker Solar Probe Program Office for the WISPR program (contract NNG11EK11I). A.V. is supported by WISPR Phase E funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip Hess.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hess, P., Howard, R.A., Stenborg, G. et al. In-flight Calibration and Data Reduction for the WISPR Instrument On Board the PSP Mission. Sol Phys 296, 94 (2021). https://doi.org/10.1007/s11207-021-01847-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01847-9

Keywords

Navigation